Differential Equations (MM213)

Assignment Questions

1)Find the general solution of $\left(2 x^{2}+2 x\right) y^{\prime \prime}+(1+5 x) y^{\prime}+y=0$ at $x=0$
2) Determine the nature of the point $x=\infty$ forLegender's equation
$\left(1-x^{2}\right) y^{\prime \prime}-2 x y \prime+p(p+1) y=0$
3) Prove that $j_{1 / 2}(x)=\sqrt{ }(2 / \pi x) \cos x$
4) Eliminate the arbitrary function F from the equation and find the corresponding pde of $\mathrm{z}=\mathrm{x}+\mathrm{y}+\mathrm{F}(\mathrm{x}, \mathrm{y})$
5) Find the general integral ofyzp+xzq $=x+y$
6) Solve by Charpits method $x^{2} p^{2}+y^{2} q^{2}=4$
7)Find the indical equation and its roots for the differential equation
$X^{2} y^{\prime \prime}+X y^{\prime}+\left(x^{2}-1\right) y=0$
8 Reduce $\mathrm{U}_{\mathrm{xx}}-\mathrm{x}^{2} \mathrm{U}_{\mathrm{yy}}=0$ to a canonical form.

TOPOLOGY - 1 (MM214)

1. Suppose X is a metric space, A and B are subsets of X then
a)Prove that $\overline{A \cup B}=\bar{A} \cup \bar{B}$
b) Prove that $\overline{A \cap B}=\bar{A} \cap \bar{B}$
2. Verify that Z is nowhere dense in R
3. Verify that Q is first category in R
4. Suppose X is a metric space. Then prove that the following are quivalent
a) X is second countable.
b) X is separable.
c) X is Lindelof.
5. Prove that any open interval (ab) is homomorphic (01)
6. Prove that if X and Y are topological spaces and $A \subset X$ and $f: X \rightarrow Y$ is continuous then $\frac{f}{A}: A \rightarrow Y$ is continuous when A has the subspace topology. Prove the coverse of the result is not true.
7. If a space X is connected and locally pathwise connected, prove that X is pathwise connected.
8. Show that a space is T_{2} if and only ifevery point of the intersection of its closed neighborhoods.

Linear Algebra (MM 211)

1) Suppose a and b real numbers, but not both 0 . Find real numbers c and d such that $1 / a+b i=c+i d$
2) Prove that $-(-v)=v$ for every $v \in V$
3) For each of the following subsets of F^{3}, determine whether it is a subspace of F^{3}
a) $\left\{\left(x_{1}, x_{2}, x_{3,}\right) \in F^{3}: x_{1}+2 x_{2}+3 x_{3},=0\right\}$
b) $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in F^{3}: x_{1}+2 x_{2},+3 x_{3}=4\right\}$
c) $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in F^{3}: x_{1}, x_{2} x_{3}=0\right\}$
4) Suppose U and W are subspaces of R^{8} such that $\operatorname{dim}=3$ and $\operatorname{dim} \mathrm{W}=5$ and $\mathrm{U}+\mathrm{W}=R^{8}$. Prove that $U \cap W=\{0\}$
5) Prove that if T is linear map from F^{4} to F^{2} such that

Null $\mathrm{T}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in F^{3}: x_{1=} 5 x_{2}\right.$, and $\left.x_{3}=7 x_{4}\right\}$, then T is surjective.
6) Define $T \in L\left(F^{3}\right)$ by $T\left(z_{1}, z_{2}, z_{3}\right)=\left(2 z_{1}, 0,5 z_{3},\right)$. Find all eigen values and eigen vectors of T

Suppose Tis a linear map onV.Let $\left\{u_{1}, \ldots \ldots u_{n}\right\}$ and $\left\{v_{1}, \ldots \ldots v_{n},\right\}$ be basis of V.Show that

$$
M\left(T,\left(\left\{u_{1}, \ldots \ldots u_{n},\right\}\right)\right)=A^{-1} M\left(T,\left(\left\{v_{1}, \ldots \ldots v_{n}\right\}\right)\right) A
$$

7) Prove that $\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B$

Real Analysis -I (MM 212)

1) Define bounded variation and total variation of a function
2) Show that $V(x)=V_{f}(a, x)$ is continuous, if f is continuous.
3) Define rectifiable path and prove that $\Lambda_{f}(a, b)=\Lambda_{f}(a, c)+\Lambda_{f}(c, b)$
4) Define Riemann-Stietljes integral and state and prove integration by parts.
5) State and Eulers Summation formula
6) State and prove Riemann condition for integrability
7) If $f \in R(\alpha)$ then show that $f \in R(V)$
8) Define uniform convergence of a series and sho
9) State and prove Cauchy condition for uniform convergence
10) Prove that every continuous function on a closed bounded subset D of R^{2} is uniformly continuous on D
11) \quad Let $\mathbb{R}^{2} \rightarrow \mathbb{R}$ be de
that $f(x, y)$ does not ex
12) \quad Give an example of
differentiable at $\left(x_{0}, y_{0}\right)$
13) Find the partial derivative of the following
i) $\quad f(x, y)=x^{2}+y^{2}$
ii) $\quad f(x, y)=\left\{\begin{array}{lc}\frac{x y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{array}\right\}$
14) Find the directional derivative

$$
\text { i) }(x, y)=\left\{\begin{array}{cc}
\frac{x^{2} y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right\}
$$

