FUNCTIONAL ANALYSIS course code:MM232 ASSIGNMENT QUESTIONS (SEMESTER 3)

1. Let $\| \|$ and $\| \|'$ be two norms on a linear space X. Then the norm $\| \|$ is equivalent to the norm $\| \|'$ if and only if there exists α , $\beta > 0$ such that $\beta \| \|'$ $\leq \|\mathbf{x}\| \leq \alpha \|$ for all $\mathbf{x} \in \mathbf{X}$.

2. Let l^2 and let l_n be defined as $l_n(k) = \begin{cases} 1 & if \ k = n \\ 0 & otherwise \end{cases}$ Show that $l_1, l_2, l_3, l_4, \dots$ is compact.

- Show by an example that an infinite dimensional subspace of a normal space X may 3 not be closed in X.
- Let $X \neq 0$ and y be normed space. Prove that BL(X,Y) is Banach iff Y Banach. 4.
- Show that any two norms on a finite dimensional linear space are equivalent. 5.
- Show that a Banach space cannot have a countably infinite basis. 6
- Let X be a normed linear space and Y a closed subspace of X with $Y \neq X$, if 0 < r < 1 prove that there exist $X_r \in X$ such that $||X_r|| = 1$ And $r < d(X_r, Y) \le 1$
- Prove that 8
- i) d(ax, ay) = |a|d(x,y)ii)d(a + x, a + y) = d(x, y)where d is a metric induced by on a normed space X 9. For $x \in C_{\infty}$, let $f(x) = \sum_{n=1}^{\infty} x(n)$ Show that f is not continuous.
- 10. Find the norm of the linear functional f defined by $f(x) = \int_{-1}^{0} x(t) dt \int_{0}^{1} x(t) dt$ where $x \in [-1, 1]$
- 11. Show that a closed subspace of a Banach Space is Banach.
- 12. Show that the inverse of $F : X \to Y$ is continuous bijective linear map.

ASSIGNMENT QUESTIONS

COMPLEX ANALYSIS-1

Course Code: MM 231

1)Let $D=\{z:|z<1\}$ and find all mobius transformation T such that T(D)=D.

2) If T(z)=(az+b)/(cz+d), find necessary and sufficient conditions that $T(\Gamma)=\Gamma$, where Γ is the unit circle.

3) show that a mobius transformation T satisfies $T(0) = \infty$ and $T(\infty) = 0$ iff $Tz = az^{-1}$

4)Let G be a region and let f and g be analytic functions on G such that f(z) g(z) = 0 for all z in G. Show that either $f \equiv 0$ or $g \equiv 0$

5) show that if f: G to C is analytic and γ is a rectifiable curve in G then fo γ is also a rectifiable curve.

6) suppose that f: G to C is analytic and one one ; Show that f'(Z) not equal to zero for any z in G.

7) prove that an entire function has a removable singularity at infinity iff it is a constant.

OPERATIONS RESEARCH

Course code- MM 234

1) Solve the following LPP graphically

Maximize $Z=6x_1 + 5x_2$; subject to

$$3x_1 + x_2 \le 160$$

 $x_1 \le 40$
 $x_2 \le 130$
 $x_1 \ge 80x_1, x_2 \ge 0$

2) Transform the following equation to the standard form

Minimize
$$Z = -3x_1 + 4x_2 - 2x_3 + 5x_4$$

Subject to $4x_1 - 4x_2 + 2x_3 - 5x_4 = -2$

 $x_1 + x_2 + 3x_3 + 5x_4 \le 14$

 $-3x_1 + 4x_2 - 2x_3 + 5x_4 \ge x_1, x_2 \ge 0$

3) Use Simplex method to solve

Maximize $Z = x_1 + 3x_2$

Subject to $x_1 \le 5, x_{1+} + 2x_2 \le 10$, $x_2 \le 4$, $x_1, x_2 \ge 0$

Use Big M method to solve

4)Minimize Z= $6x_1 + 3x_2 + 4x_3$

Subject to $x_1 \ge 30$

 $x_2 \le 50$, $x_3 \ge 20$, $x_1 + x_2 + x_3 = 120$, $x_1, x_2, x_{3\ge 0}$

5) Use two phase method solve

Maximize $Z=3x_1 + 4x_2 + 2x_3$

Subject to $x_1 + x_2 + x_3 + x_4 \le 30$, $3x_1 + 6x_2 + x_{3-} 2x_4 \le 0$, $x_2 \ge 4$, $x_1, x_2, x_3, x_{4 \ge 0}$,

6) Using north west coner method solve the TP and find its optimal solution

	M_1	M_2	M_3	M_4	Supply
	2	2	2	1	3
W_1					
W2	10	8	5	4	7
W_3	7	6	6	8	5
Demand	4	3	4	4	15

7}Find an optimal solution of the following AP

	<i>M</i> ₁	<i>M</i> ₁	<i>M</i> ₁	M_1	M_1
J_1	10	11	4	2	8
J_2	7	11	10	14	12
J_3	5	6	9	12	14
J_4	13	15	11	10	7
-					

8) Draw the projectnetwork find expected duration and variance of the job .and length of the project

.Also find the probability that to complete the project 3 days earlier than expected for the following

Job	predecessors	Optimistic time	Most probable	Pessimistic time
			time	
Α		2	5	8
В	А	6	9	12
С	А	5	14	17
D	В	5	8	11
Е	C,D	3	6	9
F		3	12	21
G	E,F	1	4	7

8)Solve by the method of QP

Minimize $Z = -6x_1 + 2x_1^2 - 2x_1x_2 + 2x_2^2$ subject to $x_1 + x_2 \le 2, x_1, x_2 \ge 0$

9)Determine

 $\max u_1^2 + u_2^2 + u_3^2$ subject to $u_1 u_2 u_3 \le 6$

10) Minimize $u_1^2 + u_2^2 + u_3^2$ subject to $u_1 u_2 u_3 \ge 10$ using forward recursion

GRAPH THEORY (ELECTIVE)-

Course code- MM233

1) Determine the automorphic groups of Pn for $n \ge 2$.

2). Show that if *G* is a 2-regular graph, then $\kappa(G) = \lambda(G)$.

3)Prove that a tournament T is transitive iff every two vertices of T have distinct outdegrees.

4)Prove that a graph *G* has an Eulerian orientation iff*G* is Eulerian

5)Prove that a graph *G* contains a 1-factor iffKo(*G* − *S*) ≤ |*S*| for every proper subset *S* of *V*(*G*).
6) Prove that every *r* −regular bipartite graph (*r* ≥ 1) has a perfect matching.

7)Prove that for every graph *G* $\chi(G) \le 1 + \Delta(G)$

8)Prove that for every graph G

 $\chi(G) \le 1 + \max{\delta(H)}$ Where the maximum is taken over all induced subgraph *H* of *G*

9)Find the radius and diameter of the Peterson graph *PG*. What is the centre of PG.

10) Prove that for every graph *G* or order *n*. $\chi(G) \ge \omega(G)$.