FUNCTIONAL ANALYSIS
 course code:MM232
 ASSIGNMENT QUESTIONS (SEMESTER 3)

1. Let \|\| and \| \|'be two norms on a linear space X . Then the norm \| \| is equivalent to the norm \| \|' if and only if there exists $\alpha, \beta>0$ such that $\beta\|\|$ |' $\leq\|\mathrm{x}\| \leq \alpha\| \|$ for all $\mathrm{x} \in \mathrm{X}$.
2. Let l^{2} and let l_{n} be defined as $l_{n}(k)=\left\{\begin{array}{cc}1 & \text { if } k=n \\ 0 & \text { otherwise }\end{array}\right\}$

Show that $l_{1}, l_{2}, l_{3}, l_{4}, \ldots \ldots$ is compact.
3. Show by an example that an infinite dimensional subspace of a normal space X may not be closed in X .
4. Let $\mathrm{X} \neq 0$ and y be normed space. Prove that $\mathrm{BL}(\mathrm{X}, \mathrm{Y})$ is Banach iff Y Banach.
5. Show that any two norms on a finite dimensional linear space are equivalent.
6. Show that a Banach space cannot have a countably infinite basis.
7. Let X be a normed linear space and Y a closed subspace of X with $\mathrm{Y} \neq \mathrm{X}$, if $0<r<1$ prove that there exist $X_{r} \in X$ such that $\left\|X_{r}\right\|=1$ And $r<d\left(X_{r}, Y\right) \leq 1$
8. Prove that

$$
\text { i) } \quad \begin{aligned}
& d(a x, a y)=|a| \mathrm{d}(\mathrm{x}, \mathrm{y}) \\
& \text { ii) } d(a+x, a+y)=d(x, y)
\end{aligned}
$$

where d is a metric induced by on a normed space X
9. For $x \in C_{\infty}$, let $f(x)=\sum_{n=1}^{\infty} x(n)$ Show that f is not continuous.
10. Find the norm of the linear functional f defined by $f(x)=\int_{-1}^{0} x(t) d t-\int_{0}^{1} x(t) d t$ where $x \in[-1,1]$
11. Show that a closed subspace of a Banach Space is Banach.
12. Show that the inverse of $F: X \rightarrow Y$ is continuous bijective linear map.

ASSIGNMENT QUESTIONS

COMPLEX ANALYSIS-1

Course Code: MM 231
1)Let $\mathrm{D}=\{\mathrm{z}: \mid \mathrm{z}<1\}$ and find all mobius transformation T such that $\mathrm{T}(\mathrm{D})=\mathrm{D}$.
2) If $T(z)=(a z+b) /(c z+d)$, find necessary and sufficient conditions that $T(\Gamma)=\Gamma$, where Γ is the unit circle.
3) show that a mobius transformation T satisfies $\mathrm{T}(0)=\infty \operatorname{andT}(\infty)=0$ iffTz $=a z^{-1}$
4)Let G be a region and let f and g be analytic functions on G such that $f(z) g(z)=0$ for all z in G . Show that either $\mathrm{f} \equiv 0$ or $\mathrm{g} \equiv 0$
5) show that if f : G to C is analytic and γ is a rectifiable curve in G then fo γ is also a rectifiable curve.
6) suppose that $f: G$ to C is analytic and one one ; Show that $f^{\prime}(Z)$ not equal to zero for any z in G.
7) prove that an entire function has a removable singularity at infinity iff it is a constant.

OPERATIONS RESEARCH

Course code- MM 234

1) Solve the following LPP graphically

Maximize $\mathrm{Z}=6 x_{1}+5 x_{2}$; subject to

$$
\begin{aligned}
& 3 x_{1}+x_{2} \leq 160 \\
& x_{1} \leq 40 \\
& x_{2} \leq 130 \\
& x_{1} \geq 80 x_{1}, x_{2} \geq 0
\end{aligned}
$$

2) Transform the following equation to the standard form

Minimize $\mathrm{Z}=-3 x_{1}+4 x_{2}-2 x_{3}+5 x_{4}$
Subject to $4 x_{1}-4 x_{2}+2 x_{3}-5 x_{4}=-2$
$x_{1}+x_{2}+3 x_{3}+5 x_{4} \leq 14$
$-3 x_{1}+4 x_{2}-2 x_{3}+5 x_{4} \geq x_{1}, x_{2} \geq 0$
3) Use Simplex method to solve

Maximize $\mathrm{Z}=x_{1}+3 x_{2}$
Subject to $x_{1} \leq 5, x_{1+}+2 x_{2} \leq 10, \quad x_{2} \leq 4, x_{1}, x_{2} \geq 0$
Use Big M method to solve
4)Minimize $\mathrm{Z}=6 x_{1}+3 x_{2}+4 x_{3}$
Subject to $x_{1} \geq 30$
$x_{2} \leq 50, x_{3} \geq 20, x_{1}+x_{2}+x_{3}=120, x_{1}, x_{2}, x_{3 \geq 0}$
5) Use two phase method solve

Maximize $Z=3 x_{1}+4 x_{2}+2 x_{3}$

Subject to $x_{1}+x_{2}+x_{3}+x_{4} \leq 30,3 x_{1}+6 x_{2}+x_{3-} 2 x_{4} \leq 0, x_{2} \geq 4 \quad, x_{1}, x_{2}, x_{3}, x_{4 \geq 0}$,
6) Using north west coner method solve the TP and find its optimal solution

	M_{1}	M_{2}	M_{3}	M_{4}	Supply
	2	2	2	1	3
W_{1}					
$W 2$	10	8	5	4	7
W_{3}	7	6	6	8	5
Demand	4	3	4	4	15

7\}Find an optimal solution of the following AP

	M_{1}	M_{1}	M_{1}	M_{1}	M_{1}
J_{1}	10	11	4	2	8
J_{2}	7	11	10	14	12
J_{3}	5	6	9	12	14
J_{4}	13	15	11	10	7

8) Draw the projctnetwork find expected duration and variance of the job and length of the project
.Also find the probability that to complete the project 3 days earlier than expected for the following

Job	predecessors	Optimistic time	Most probable time	Pessimistic time
A	---	2	5	8
B	A	6	9	12
C	A	5	14	17
D	B	5	8	11
E	C,D	3	6	9
F	--	3	12	21
G	E,F	1	4	7

8)Solve by the method of QP

Minimize $Z=-6 x_{1}+2 x_{1}^{2}-2 x_{1} x_{2+}+2 x_{2}^{2}$ subject to $x_{1}+x_{2} \leq 2, x_{1}, x_{2} \geq 0$
9)Determine
$\max u_{1}^{2}+u_{2}^{2}+u_{3}^{2}$ subject to $u_{1} u_{2} u_{3} \leq 6$
10) Minimize $u_{1}^{2}+u_{2}^{2}+u_{3}^{2}$ subject to $u_{1} u_{2} u_{3} \geq 10$ using forward recursion

GRAPH THEORY (ELECTIVE)-

Course code- MM233

1) Determine the automorphic groups of $P n$ for $n \geq 2$.
2). Show that if G is a 2 -regular graph, then $\kappa(G)=\lambda(G)$.
3)Prove that a tournament T is transitive iff every two vertices of T have distinct outdegrees.
4)Prove that a graph G has an Eulerian orientation iff G is Eulerian
5)Prove that a graph G contains a 1 -factor $\operatorname{iffKo}(G-S) \leq|S|$ for every proper subset S of $V(G)$.
2) Prove that every r-regular bipartite graph $(r \geq 1)$ has a perfect matching.
7)Prove that for every graph G
$\chi(G) \leq 1+\Delta(G)$
8)Prove that for every graph G
$\chi(G) \leq 1+\max \{\delta(H)\}$
Where the maximum is taken over all induced subgraph H of G
9)Find the radius and diameter of the Peterson graph $P G$. What is the centre of PG.
3) Prove that for every graph G or order n.
$\chi(G) \geq \omega(G)$.
