ASSIGNMENT QUESTIONS (SEMESTER 4)

FUNCTIONAL ANALYSIS Course code: MM242

1.Show that an operator T on a Hilbert Space H is unitary iff $T(e_i)$ complete orthonormal set whenever $\{e_i\}$ is.

2. Prove that T1 and T2 are self adjoint operators on a Hilbert space H, prove that T1 T2 +T2 T1 is self adjoint

3) Let T be a normal operator on a finite dimensional Hilbert space H with spectrum λ_1 , λ_2 , ..., λ_m , . Then prove that

i) T is self - adjoint \Leftrightarrow each λi , is real.

ii) T is positive \Leftrightarrow each $\lambda i \ge 0$

iii) T is unitary $\Leftrightarrow \lambda i = 1$ for each .

4) Show that the self adjoint operator is continuous map

5) Prove that a Hilbert space is seperable iff every ortho normal set in H is countable.

6) Show that an idem potent operator on a Hilbert space H is a projection on H iff it is normal.

7) Let $x_1 x_2 \dots x_n$, be an orthonormal set in X and k_1, k_2, \dots, k_n be scalars having absolute value 1. Then $k_1x_1 + k_2x_2 + \dots + k_nx_n = x_1 + \dots + x_n$

Analytic Number Theory

Course code : MM244

- 1) Show that $\sum_{n=1}^{\infty} \frac{1}{p_n}$ diverges
- 2) Define Mobiousfunction, Eulers function Also find $\mu(100), \mu(12600), \varphi(100), \varphi(1200)$
- 3) Define Mangoldt function $\Lambda(n)$ Find $\Lambda(1250)\Lambda(200)$
- 4) State and prove Chinees Reminder Theorem
- 5) Find quadratic residue modulo 29 ,modulo 37
- 6) State and prove Gauss's Lemma
- 7) Find all primes for which 3 is a quadratic residue

8) Find
$$\left[\frac{888}{1999}\right]$$

- 9) Find the primitive root of 71
- 10) Prove that 2^{α} has no primitive roots for $\alpha \geq 3$

COMPLEX ANALYSIS-II

Course Code: MM 241

1)Prove that $\Pi(1+Zn)$ converges absolutely iff $\Pi(1+|Zn|)$ converges.

2) Prove that A set is normal if and only if its closure is compact.

3) A region G_1 is conformally equivalent to G_2 if there is an analytic function $f: G_1 \rightarrow C$ such that f is one to one and $f(G_1)=G_2$. Prove that this is an equivalent relation

4) let f be an analytic on $G = \{z: Rez > 0\}$ one one with Re f(z) > 0 for all z in G and f(a) = a for some real number a show that |f'(a)| = < 1

5)Prove that $\lim z \rightarrow 0(\log(1+z))/z = 1$

6) show that $\prod_{n=2}^{\infty} (1 - 1/n^2) = 1/2$

7) Let f and g be analytical functions on a region G and show that there are analytical functions f_1,g_1 , and h on G such that $f(z)=h(z) f_1(z)$ and $g(z)=h(z)g_1(z)$ for all z in G; and f_1 and g₁ have no common zeros

Coding theory

Course code : MM243

- For n=3 and $C=\{000,111,110\}$. For each word in K^3 that could be received ,find 1) the word v in the code C which IMLD will conclude was sent
- 2) Write the vector 0011 as a unique linear combination of the words $\{1000, 1100, 1110, 1111\}$

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

3) Let H= $\begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$ for the PCM for linear code C, find a) generator matrix for C^{\perp} b) a

parity check matrix for C^{\perp} c) a generator matrix for C

- 4) Find a parity check matrix for $C = \langle S \rangle$, $S = \{10101, 01010, 11111, 00011, 10110\}$
- 5) Explain Golay code and find weight of C_{23}
- 6) Define Reed Mullers Codes and find G(23)
- 7) Find generating and Parity check matrix for an extended hamming code of length 8
- 8) Find the generator polynomial of the code spanned by $S = \{010, 011, 111\}$

9) Let g(x) = $1 + x^4 + x^6 + x^7 +$ x^8 is the generator polynomial for a cyclic code with d + 5, n = 15,.

Decode the word w = 110011100111000

10) If $f(x)=1 + x + x^2$, find $[f(x)]^4$ 11) Construct GF(2⁴) using $h(x) = 1 + x + x^4$
