## ASSIGNMENT QUESTIONS (SEMESTER 4)

## FUNCTIONAL ANALYSIS <br> Course code: MM242

1. Show that an operator T on a Hilbert Space H is unitary iff $\mathrm{T}\left(e_{i}\right)$ complete orthonormal set whenever $\left\{e_{i}\right\}$ is.
2. Prove that $T 1$ and $T 2$ are self adjoint operators on a Hilbert space H, prove that T1 T2 $+T 2 T 1$ is self adjoint
3) Let T be a normal operator on a finite dimensional Hilbert space $H$ with spectrum $\lambda_{1}, \lambda_{2}$, $\ldots . . ., \lambda_{m}$, . Then prove that
i) T is self - adjoint $\Leftrightarrow$ each $\lambda i$,,is real.
ii) T is positive $\Leftrightarrow$ each $\lambda i \geq 0$
iii) T is unitary $\Leftrightarrow \lambda i=1$ for each .
4) Show that the self adjoint operator is continuous map
5) Prove that a Hilbert space is seperableiff every ortho normal set in H is countable.
6) Show that an idem potent operator on a Hilbert space $H$ is a projection on $H$ iff it is normal.
7) Let $\mathrm{x}_{1} \mathrm{x}_{2} \ldots \ldots \mathrm{x}_{\mathrm{n}}$, be an orthonormal set in X and $k_{1}, k_{2}, \ldots \ldots \ldots k_{\mathrm{n}}$ be scalars having absolute value 1 . Then $k_{1} \mathrm{x}_{1}+k_{2} \mathrm{x}_{2}+\cdots \ldots k_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{x}_{1}+\cdots+\mathrm{x}_{\mathrm{n}}$

## Analytic Number Theory

## Course code : MM244

1) Show that $\sum_{n=1}^{\infty} 1 / p_{n}$ diverges
2) Define Mobiousfunction, Eulers function Also find $\mu(100), \mu(12600), \varphi(100), \varphi(1200)$
3) Define Mangoldt function $\Lambda(n)$ Find $\Lambda(1250) \Lambda(200)$
4) State and prove Chinees Reminder Theorem
5) Find quadratic residue modulo 29 ,modulo 37
6) State and prove Gauss's Lemma
7) Find all primes for which 3 is a quadratic residue
8) Find $\left[\frac{888}{1999}\right]$
9) Find the primitive root of 71
10) Prove that $2^{\alpha}$ has no primitive roots for $\alpha \geq 3$

## COMPLEX ANALYSIS-II

## Course Code: MM 241

1)Prove that $\Pi(1+\mathrm{Zn})$ converges absolutely iff $\Pi(1+|\mathrm{Zn}|)$ converges.
2) Prove that A set is normal if and only if its closure is compact.
3)A region $G_{1}$ is conformally equivalent to $G_{2}$ if there is an analytic function $f: G_{1} \rightarrow C$ such that $f$ is one to one and $f\left(G_{1}\right)=G_{2}$. Prove that this is an equivalent relation
4)let $f$ be an analytic on $G=\{z: \operatorname{Rez}>0\}$ one one with $\operatorname{Re} f(z)>0$ for all $z$ in $G$ and $f(a)=a$ for some real number a show that $\left|f^{\prime}(a)\right|=<1$
5)Prove that $\operatorname{limz} \rightarrow 0(\log (1+z)) / \mathrm{z}=1$
6)show that $\prod_{n=2}^{\infty}\left(1-1 / n^{2}\right)=1 / 2$
7) Let $f$ and $g$ be analytical functions on a region $G$ and show that there are analytical functions $f_{1}, g_{1}$, and $h$ on $G$ such that $f(z)=h(z) f_{1}(z)$ and $g(z)=h(z) g_{1}(z)$ for all $z$ in $G$; and $f_{1}$ and $g_{1}$ have no common zeros

## Coding theory

## Course code : MM243

1) For $n=3$ and $C=\{000,111,110\}$. For each word in $K^{3}$ that could be received ,find the word v in the code C which IMLD will conclude was sent
2) Write the vector 0011 as a unique linear combination of the words $\{1000,1100,1110,1111\}$
3) Let $\mathrm{H}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1\end{array}\right]$ for the PCM for linear code C , find
a) generator matrix for $C^{\perp}$ b) a parity check matrix for $C^{\perp}$ c) a generator matrix for C
4) Find a parity check matrix for $\mathrm{C}=\langle S\rangle, S=\{10101,01010,11111,00011,10110\}$
5) Explain Golay code and find weight of $C_{23}$
6) Define Reed Mullers Codes and find G(2 3)
7) Find generating and Parity check matrix for an extended hamming code of length 8
8) Find the generator polynomial of the code spanned by $S=\{010,011,111\}$
9) Let
$g(x)=$
$1+x^{4}+x^{6}+x^{7}+$
$x^{8}$ is the generator polynomial for a cyclic code with $d+5, n=15$,.
Decode the word $w=110011100111000$
10) If $f(x)=1+x+x^{2}$ find $[f(x)]^{4}$
11) Construct $\mathrm{GF}\left(2^{4}\right)$ using $h(x)=1+x+x^{4}$
