UNIVERSITY OF KERALA SCHOOL OF DISTANCE EDUCATION

Assignment Topics for Semester-5

B.Sc MATHEMATICS 2020 Admissions

ABSRACT ALGEBRA I COURSE CODE - MM1545

QUESTIONS

1. Give examples of binary (algebraic) structures.
2. $\operatorname{In}(Z,+)$, let $H=$ set of all multiples of 3 and $K=$ set of all multiples of 5 .
Show that H and K are subgroups of Z. Also describe $H \cap K$
3. For each binary operation $*$ defined below say whether the following is a group or not
a) Define * on Z by $a * b=a-b$
b) Define $*$ on Z by $a * b=a b$
c) Define $*$ on R^{+}by $a * b=a b$
d) Define $*$ on Q by $a * b=a b$
4. Express the following as the product of disjoint cycles
a) $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 5 & 7 & 1 & 6 & 4\end{array}\right)$
b) $\left(\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 9 & 5 & 4 & 7 & 8 & 1 & 6 & 10 & 2\end{array}\right)$
c) $(1325)(143)(251)$
d) $\left(\begin{array}{llll}1 & 4 & 3 & 2\end{array}\right)\left(\begin{array}{lll}2 & 4 & 1\end{array}\right)$
5. Compute $a^{-1} b a w h e r e ~ a=\left(\begin{array}{lll}1 & 3 & 4\end{array}\right)$ and $b=\left(\begin{array}{llll}2 & 3 & 5 & 4\end{array}\right)$
6. List the elements of $Z_{3} \times Z_{4}$ Find the order of any five elements.
7. If $\alpha=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 2 & 5 & 1\end{array}\right)$ and $\beta=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1\end{array}\right)$ find $\alpha \beta$ and α^{-1}, α^{2}.

REAL ANALYSIS - I

COURSE CODE - 1541

QUESTIONS

1. Find all real numbers x such that
a) $x^{2}>3 x+4$
b) $1<x^{2}<4$
2. Prove that $\frac{c_{1}+c_{2}+\cdots+c_{n}}{\sqrt{n}} \leq\left(c_{1}{ }^{2}+c_{2}{ }^{2}+\cdots+c_{n}{ }^{2}\right)^{\frac{1}{2}} \leq c_{1}+c_{2}+\cdots+c_{n}$
3. Prove that $\sqrt{3}$ is not a rational number
4. Prove the sequence $\{n\}$ is divergent.
5. Prove the limit of $x_{n}=\frac{1}{2}\left[x_{n-1}+x_{n}\right]$
6. Show that $x_{n+1}=\frac{1}{2+x_{n}}$ is contractive and find its limits.
7. Determine whether the following limits exists and justify your answer
a) $\lim _{x \rightarrow 0} \cos \frac{1}{x}$
b) $\lim _{x \rightarrow 0} x \sin \frac{1}{x}$ c) $\lim _{x \rightarrow 0} x \cos \frac{1}{x}$
d) $\lim _{x \rightarrow 0} x \sin \frac{1}{x^{2}}$
8. Find the following
a). $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$
b) $\lim _{x \rightarrow 1} \frac{\sqrt{x-1}}{x-1}$
c) $\lim _{x \rightarrow 0} \frac{\sqrt{1+2 x}-\sqrt{1+3 x}}{2+2 x^{2}} \quad x>0$

DIFFERENTIAL EQUATIONS MM -1543

ASSIGNMENT QUESTIONS

1. Solve the equations by the method of Integrating factors.
(a) $\frac{d y}{d x}+3 y=e^{-2 x}$
2. Solve the equation using variable separable method.
(a) $\frac{d y}{d t}-2 y=0$
3. Show that the equations are exact and solve

$$
2 x y d x+x^{2} d y=0
$$

4.Find the integrating factor and solve the following equations:

$$
\left(y-x^{2}\right) d x+\left(x^{2} \sin y-x\right) d y=0
$$

5. Find a general solution by the method of variation of parameters.

$$
y^{\prime \prime}+9 y=\sec 3 x
$$

6 Find a general solution of the differential equations given below:
(a) $y^{\prime \prime}+4 y=\sin 3 x$
7.Find the general solution of the equation:

$$
x^{2} y^{\prime \prime}-7 x y^{\prime}++12 y=0
$$

8. Solve the initial value problem:

$$
x^{2} y^{\prime \prime}+x y^{\prime}+9 y=0 ; y(1)=2, y^{\prime}(1)=0
$$

9.Find the general solution of the equation:

$$
x^{2} y^{\prime \prime}-9 x y^{\prime}+25 y=0
$$

VECTOR ANALYSIS

ASSIGNMENT QUESTIONS

1.If $f(x, y, z)=X^{2} Y-2 Y^{2} Z^{3}$ find ∇f at the point $(1,-1,2)$.
2. Compute the divergence and curl of the vector point functions. 1. $F=$ $X^{2} Y Z i-2 X Z^{3} j+X Z^{2} k$.

3Evaluate $\int_{C} F$. $d r$, where $F=X^{2}-Y^{2} i+x y j$ and curve C is the arc of the curve $y=X^{3}$ from $(0,0)$ to $(2,8)$.
4.Determine whether F is conservative vector field. If so, find a potential function for it is

$$
(x, y, z)=X^{2} Y i+5 X Y^{2} \mathrm{j}
$$

5. Evaluate using Green's Theorem $\oint 3 x y d x+2 x y d y$, where C is the rectangle bounded by $x=-2, x=4, y=1$ and $y=2$.
6. Verify Stoke's theorem when $F=x^{2} i+y^{2} j+z^{2} k, \mathrm{~S}$ is the upper hemisphere $z=\sqrt{a^{2}-x^{2}-y^{2}}$

COMPLEX ANALYSIS

QUESTIONS

1. Find the square root of $-5-12 i$
2. Using the Cauchy -Riemann equations verify the following is analytic or not
i) $x^{2}-y^{2}+2 i x y$
ii) $x^{2}+y^{2}-2 i x y$
3. Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{z^{n}}{n!}$
4. Show that siniy $=i$ sinhy
5. Evaluate $\int f$ over c where $f(z)=x^{2}+i y^{2}$ where c is given by $z(t)=t^{2}+i t^{2} \quad 0 \leq t \leq 1$
