UNIVERSITY OF KERALA SCHOOL OF DISTANCE EDUCATION

Assignment Topics for Semester-5

B.Sc MATHEMATICS 2020 Admissions

ABSRACT ALGEBRA I COURSE CODE – MM1545

QUESTIONS

- 1. Give examples of binary (algebraic) structures.
- 2. In(Z, +), let H = set of all multiples of 3 and K = set of all multiples of 5. Show that H and K are subgroups of Z. Also describe $H \cap K$
- 3. For each binary operation * defined below say whether the following is a group or not
 - a) Define * on Z by a * b = a b
 - b) Define * on *Z* by a * b = ab
 - c) Define * on R^+ by a * b = ab
 - d) Define * on Q by a * b = ab
- 4. Express the following as the product of disjoint cycles

a) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 57 & 1 & 6 & 4 \end{pmatrix}$ b) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 9 & 5 & 4 & 7 & 8 & 1 & 6 & 10 & 2 \end{pmatrix}$ c) (1 & 3 & 2 & 5)(1 & 4 & 3)(2 & 5 & 1)d) (1 & 4 & 3 & 2)(2 & 4 & 1)

5. Compute $a^{-1}ba$ where $a = (1 \ 3 \ 4)$ and $b = (2 \ 3 \ 5 \ 4)$

6. List the elements of $Z_3 \times Z_4$ Find the order of any five elements.

7. If $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 2 & 5 & 1 \end{pmatrix}$ and $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix}$ find $\alpha\beta$ and α^{-1} , α^2 .

REAL ANALYSIS – I COURSE CODE – 1541

QUESTIONS

- 1. Find all real numbers x such that
 - a) $x^2 > 3x + 4$
 - b) $1 < x^2 < 4$
- 2. Prove that $\frac{c_1 + c_2 + \dots + c_n}{\sqrt{n}} \le (c_1^2 + c_2^2 + \dots + c_n^2)^{\frac{1}{2}} \le c_1 + c_2 + \dots + c_n$
- 3. Prove that $\sqrt{3}$ is not a rational number
- 4. Prove the sequence $\{n\}$ is divergent.
- 5. Prove the limit of $x_n = \frac{1}{2}[x_{n-1} + x_n]$

6. Show that $x_{n+1} = \frac{1}{2+x_n}$ is contractive and find its limits.

- 7. Determine whether the following limits exists and justify your answer a) $\lim_{x\to 0} \cos \frac{1}{x}$ b) $\lim_{x\to 0} x \sin \frac{1}{x}$ c) $\lim_{x\to 0} x \cos \frac{1}{x}$ d) $\lim_{x\to 0} x \sin \frac{1}{x^2}$
- 8. Find the following

a).
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$$

b)
$$\lim_{x \to 1} \frac{\sqrt{x - 1}}{x - 1}$$

c)
$$\lim_{x \to 0} \frac{\sqrt{1 + 2x} - \sqrt{1 + 3x}}{2 + 2x^2} \quad x > 0$$

DIFFERENTIAL EQUATIONS MM -1543

ASSIGNMENT QUESTIONS

- 1. Solve the equations by the method of Integrating factors. (a) $\frac{dy}{dx} + 3y = e^{-2x}$
- 2. Solve the equation using variable separable method. (a) $\frac{dy}{dt} - 2y = 0$
- 3.Show that the equations are exact and solve

$$2xydx + x^2dy = 0$$

4. Find the integrating factor and solve the following equations:

$$(y - x^2)dx + (x^2 \sin y - x)dy = 0$$

5. Find a general solution by the method of variation of parameters.

$$y'' + 9y = \sec 3x$$

6 Find a general solution of the differential equations given below:

 $(a) y'' + 4y = \sin 3x$

7. Find the general solution of the equation:

$$x^2y'' - 7xy' + +12y = 0$$

8.Solve the initial value problem:

$$x^{2}y'' + xy' + 9y = 0; y(1) = 2, y'(1) = 0$$

9. Find the general solution of the equation:

$$x^2y'' - 9xy' + 25y = 0$$

VECTOR ANALYSIS course code : MM - 1544

ASSIGNMENT QUESTIONS

1.If $f(x, y, z) = X^2 Y - 2 Y^2 Z^3$ find ∇f at the point (1, -1,2).

2. Compute the divergence and curl of the vector point functions. 1. $F = X^2 Y Z i - 2X Z^3 j + X Z^2 k$.

3Evaluate $\int_C F dr$, where $F = X^2 - Y^2 i + xyj$ and curve *C* is the arc of the curve $y = X^3$ from (0,0) to (2,8).

4. Determine whether F is conservative vector field. If so, find a potential function for it is

 $(x, y, z) = X^2 Y i + 5X Y^2 j$

- 5. Evaluate using Green's Theorem $\oint 3xydx + 2xydy$, where *C* is the rectangle bounded by x = -2, x = 4, y = 1 and y = 2.
- 6. Verify Stoke's theorem when $F = x^2i + y^2j + z^2k$, S is the upper hemisphere $z = \sqrt{a^2 - x^2 - y^2}$

COMPLEX ANALYSIS COURSE CODE: MM-1542

QUESTIONS

- 1. Find the square root of -5 12i
- 2. Using the Cauchy –Riemann equations verify the following is analytic or not
 - i) $x^2 y^2 + 2ixy$ ii) $x^2 + y^2 - 2ixy$
- 3. Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{z^n}{n!}$
- 4. Show that siniy = i sinhy
- 5. Evaluate $\int f$ over c where $f(z) = x^2 + iy^2$ where c is given by $z(t) = t^2 + it^2$ $0 \le t \le 1$