MSc Mathematics 3 semester Assignment questions

Complex Analysis I

1. Derive the following sets
i) $\left\{z: e^{z}=i\right\}$
ii) $\left\{z: e^{z}=-i\right\}$
iii) $\left\{z: e^{z}=-1\right\}$
iv) $\{z: \cos z=0\}$
2. Calculate the following
i) $\int_{0}^{\pi} \frac{\cos 2 \theta d \theta}{1-2 a \cos \theta+a^{2}} \quad a^{2} \leq 1$
ii) $\int_{0}^{\pi} \frac{d \theta}{(a+\cos \theta)^{2}}$ where $a>1$
3. Verify the following
i) $\int_{0}^{\infty} \frac{\cos a x d x}{\left(1+x^{2}\right)^{2}}=\frac{\pi(a+1) e^{-a}}{4}$ if a >0
ii) $\int_{0}^{\infty} \frac{\log x d x}{\left(1+x^{2}\right)^{2}}=\frac{-\pi}{4}$
iii) $\int_{0}^{\infty} \frac{d x}{1+x^{2}}=\frac{\pi}{2}$
iv) $\int_{0}^{2 \pi} \log \sec ^{2} 2 \theta d \theta=4 \int_{0}^{\pi} \log \sin \theta d \theta$
4. Evaluate the following
i) $\quad \int_{\gamma} \frac{e^{z}-e^{-z} d z}{z^{n}}$ where n is a positive integer and $\gamma(t)=$ $e^{i t} 0 \leq t \leq 2 \pi$
ii) $\quad \int_{\gamma} \frac{z^{2}+1 d z}{z\left(z^{2}+4\right)}$ where $\gamma(t)=r e^{i t} \quad 0 \leq t \leq 2 \pi$
iii) $\int_{\gamma} \frac{d z}{z^{2}+1} \quad$ where $\gamma(t)=2 e^{i t}, 0 \leq t \leq 2 \pi$
5. Evaluate
i) $\int_{\gamma} \frac{e^{i z} d z}{z^{2}} \quad \gamma(t)=e^{i t}, 0 \leq t \leq 2 \pi$
ii) $\int_{\gamma} \frac{\operatorname{sinzdz}}{z^{3}} \quad \gamma(t)=e^{i t} \quad 0 \leq t \leq 2 \pi$
iii) $\int_{\gamma} \frac{\log z}{z^{n}} d z \quad \gamma(t)=1+\frac{1}{2} e^{i t}, 0 \leq t \leq 2 \pi$

Operation Research

1. Use simplex method to solve Maximize $z=x_{1}+3 x_{2}$ Subject to $x_{1} \leq 5$;

$$
\begin{aligned}
& x_{1}+2 x_{2} \leq 10 ; \quad x_{2} \leq 4, \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

2. Use big M method solve.

Minimize $Z=2 y_{1}+4 y_{2}$

$$
\begin{aligned}
& \text { Subject to } 2 y_{1}-3 y_{2} \geq 2, \\
& \qquad-y_{1}+y_{2} \geq 3 ; \quad y_{1}, y_{2} \geq 0
\end{aligned}
$$

3. Find the optimum basic feasible solution to the following

	D_{1}	D_{2}	D_{3}		D_{4}
Available					
O_{1}	7	9	3	2	16
O_{2}	4	4	3	5	14
O_{3}	6	4	5	8	20
Requirement	11	9	22	8	50

4)Find the optimal assignment of the following

	J_{1}	J_{2}	J_{3}	J_{4}
m_{1}	10	9	7	8
m_{2}	5	8	7	7
m_{3}	5	4	6	5
m_{4}	2	3	4	5

5) Consider a project consisting of nine jobs (A, B, C,I) with the following precedence relations and time estimates.

Job	Predecessor	Time (Days)
A	--	15
B	--	10
C	A,B	10

D	AB	10
E	B	5
F	D,E	5
G	C,F	20
H	D,E	10
I	G,H	15

a. Draw the project network for this problem designating the jobs by arcs and event by nodes. b. Determine the earliest completion time of the project, and identify the critical path.
c. Determine a project schedule listing the earliest and latest starting times of each job. Also identify the critical job.
6). Minimize $f=\left(x_{1}-2\right)^{2}+x_{2}^{2}$ subject to $x_{1}^{2}-x_{2}-1 \leq 0$, $x_{1} \geq 0, x_{2} \geq 0$, Obtain the solution graphically.
7)Minimize $u_{1}{ }^{2}+u_{2}{ }^{2}+u_{3}{ }^{2}$ subject to $u_{1}+u_{2}+u_{3} \geq$ $0, u_{1}, u_{2}, u_{3} \geq 0$

GRAPH THEORY

course code: MM233

ASSIGNMENT QUESTIONS

1. Prove that if G is a cubic graph, then $K(G)=\lambda(G)$
2. Prove that for every tree T_{m} of order $\mathrm{m} \geq 2$ and every integern $\geq 2, \quad r\left(T_{m}, K_{m}\right)=(m-1)(n-1)+1$
3. Prove that a graph G is Eulerian if and only if every vertex is of even degree.
4. Prove that every tournament contains a Hamiltonian path.
5. Determine the chromatic number of each of the following:
a) The Petersen graph
b) The n - cube Q_{n}.
c) The wheel $W_{n} \cong C_{n}+K_{1}$
6. Let \| \| and \| \|' be two norms on a linear space X . Then the norm \|\| is equivalent to the norm \|. \|' if and only if there exists $\alpha, \beta>0$ such that $\beta\|\|\leq\| \mathrm{x}\| \leq \alpha\| \|$ for all $\mathrm{x} \epsilon \mathrm{X}$.
7. Let l^{2} and let l_{n}, be defined as $l_{n}(k)=\left\{\begin{array}{cc}1 & \text { if } k=n \\ 0 & \text { otherwise }\end{array}\right\}$ Show that $l_{1}, l_{2}, l_{3}, l_{4}, \ldots \ldots$..is compact.
8. Show by an example that an infinite dimensional subspace of a normal space X may not be closed in X .
9. Let $X \neq 0$ and y be normed space. Prove that $B L(X, Y)$ is Banach iff Y Banach.
10. Show that any two norms on a finite dimensional linear space are equivalent.
11. Show that a Banach space cannot have a countably infinite basis.
12. Let X be a normed linear space and Y a closed subspace of X with $\mathrm{Y} \neq \mathrm{X}$, if $0<r<1$ prove that there exist $X_{r} \in X$ such that $\left\|X_{r}\right\|=1$ And $r<d\left(X_{r}, Y\right) \leq 1$
13. Prove that
i) $\quad d(a x, a y)=|a| \mathrm{d}(\mathrm{x}, \mathrm{y})$
ii) $d(a+x, a+y)=d(x, y)$
where d is a metric induced by on a normed space X
14. For $x \in C_{\infty}$, let $f(x)=\sum_{n=1}^{\infty} x(n)$ Show that f is not continuous.
15. Find the norm of the linear functional f defined by $f(x)=$ $\int_{-1}^{0} x(t) d t-\int_{0}^{1} x(t) d t$ where $x \in[-1,1]$
16. Show that a closed subspace of a Banach Space is Banach.
17. Show that the inverse of $F: X \rightarrow Y$ is continuous bijective linear map.
