M.Sc. Mathematics

Semester 3

Assignment questions

Complex Analysis I

course code: MM231

- 1. Derive the following sets
 - i) $\{z : e^z = i\}$
 - ii) $\{z:e^z=-i\}$
 - iii) $\{z : e^z = -1\}$
 - iv) $\{z : cosz = 0\}$
- 2. Calculate the following

 - $\int_{0}^{\pi} \frac{\cos 2\theta d\theta}{1 2a\cos \theta + a^{2}} a^{2} \le 1$ $\int_{0}^{\pi} \frac{d\theta}{(a + \cos \theta)^{2}} where \ a > 1$ ii)
- 3. Verify the following
 - $\int_0^\infty \frac{\cos ax dx}{(1+x^2)^2} = \frac{\pi (a+1)e^{-a}}{4} \text{ if } a > 0$
 - $\int_0^\infty \frac{\log x dx}{(1+x^2)^2} = \frac{-\pi}{4}$ ii)

 - iii) $\int_0^\infty \frac{dx}{1+x^2} = \frac{\pi}{2}$
iv) $\int_0^{2\pi} logsec^2 2\theta d\theta = 4 \int_0^\pi logsin\theta d\theta$
- 4. Evaluate the following
- $\int_{\gamma} \frac{e^{z} e^{-z} dz}{z^{n}}$ where n is a positive integer and $\gamma(t) = e^{it} 0 \le t \le 2\pi$ i)
- $\int_{\gamma} \frac{z^{2+1} dz}{z(z^{2}+4)} where \, \gamma(t) = re^{it} \quad 0 \le t \le 2\pi$
- $\int_{\gamma} \frac{dz}{z^{2}+1} \quad where \, \gamma(t) = 2e^{it} \, , 0 \le t \le 2\pi$ iii)
- 5. Evaluate
 - i) $\int_{V} \frac{e^{iz}dz}{z^2}$ $\gamma(t) = e^{it}$, $0 \le t \le 2\pi$
 - ii) $\int_{\gamma} \frac{\sin z dz}{z^3}$ $\gamma(t) = e^{it}$ $0 \le t \le 2\pi$
 - iii) $\int_{\gamma} \frac{\log z}{z^n} dz$ $\gamma(t) = 1 + \frac{1}{2}e^{it}$, $0 \le t \le 2\pi$

Operation Research

course code: MM234

1. Use simplex method to solve Maximize $z = x_1 + 3x_2$ Subject to $x_1 \le 5$;

$$x_1 + 2x_2 \le 10; \quad x_2 \le 4,$$

$$x_1, x_2 \ge 0$$

2. Use big *M* method solve.

$$Minimize Z = 2y_1 + 4y_2$$

Subject to
$$2y_1 - 3y_2 \ge 2$$
,

$$-y_1 + y_2 \ge 3; \quad y_1, y_2 \ge 0$$

3. Find the optimum basic feasible solution to the following

	D_1	D_2	D_3	D_4	Available
O_1	7	9	3	2	16
O_2	4	4	3	5	14
O_3	6	4	5	8	20
Requirement	11	9	22	8	50

4) Find the optimal assignment of the following

	J_1	J_2	J_3	J_4
m_1	10	9	7	8
m_2	5	8	7	7
m_3	5	4	6	5
m_4	2	3	4	5

5) Consider a project consisting of nine jobs (A, B, C,...,I) with the following precedence relations and time estimates.

Job	Predecessor	Time (Days)
A		15
В		10
С	A,B	10
D	AB	10
E	В	5
F	D,E	5

G	C ,F	20
Н	D,E	10
I	G ,H	15

- a. Draw the project network for this problem designating the jobs by arcs and event by nodes. b. Determine the earliest completion time of the project, and identify the critical path.
- c. Determine a project schedule listing the earliest and latest starting times of each job. Also identify the critical job.
- 6). Minimize $f=(x_1-2)^2+x_2^2$ subject to $x_1^2-x_2-1\leq 0$, $x_1\geq 0$, $x_2\geq 0$, Obtain the solution graphically.
- 7) Minimize ${u_1}^2+{u_2}^2+{u_3}^2 \ \ subject\ to\ u_1+u_2+u_3\geq 0 \ \ , u_1$, u_2 , $u_3\ \geq 0$

GRAPH THEORY

course code: MM233

ASSIGNMENT QUESTIONS

- 1. Prove that if G is a cubic graph, then $K(G) = \lambda(G)$
- 2. Prove that for every tree T_m of order $m \ge 2$ and every integer $n \ge 2$, $r(T_m, K_m) = (m-1)(n-1) + 1$
- 3. Prove that a graph G is Eulerian if and only if every vertex is of even degree.
- 4. Prove that every tournament contains a Hamiltonian path.
- 5. Determine the chromatic number of each of the following:
 - a) The Petersen graph
 - b) The n cube Q_n .
 - c) The wheel $W_n \cong C_n + K_1$

FUNCTIONAL ANALYSIS course code: MM232

- 2. Let l^2 and let l_n be defined as $l_n(k) = \begin{cases} 1 & \text{if } k = n \\ 0 & \text{otherwise} \end{cases}$ Show that $l_1, l_2, l_3, l_4, \dots$ is compact.

- 3. Show by an example that an infinite dimensional subspace of a normal space X may not be closed in X.
- Let $X \neq 0$ and y be normed space. Prove that BL(X,Y) is Banachiff Y Banach.
- 5. Show that any two norms on a finite dimensional linear space are equivalent.
- Show that a Banach space cannot have a countably infinite basis.
- 7. Let X be a normed linear space and Y a closed subspace of X with Y \neq X, if 0 < r < 1 prove that there exist $X_r \in X$ such that $||X_r|| = 1$ And $r < d(X_r, Y) \le 1$
- 8. Prove that
 - i) d(ax, ay) = |a|d(x,y)ii) d(a + x, a + y) = d(x, y)where d is a metric induced by on a normed space X
- 9. For $x \in C_{\infty}$, let $f(x) = \sum_{n=1}^{\infty} x(n)$ Show that f is not continuous.
- 10. Find the norm of the linear functional f defined by $f(x) = \int_{-1}^{0} x(t)dt \int_{0}^{1} x(t)dt$ where $x \in [-1, 1]$
- 11. Show that a closed subspace of a Banach Space is Banach.
- 12. Show that the inverse of $F: X \to Y$ is continuous bijective linear map.