M.Sc Mathematics

Assignment questions (Semester 4)

Course code: MM241

Complex Analysis II

- 1. Discuss the convergence of $\prod_{n=1}^{\infty} \frac{1}{n^p}$ for p > 0
- 2. If B(E) is a closed sub algebra of C(K, C) that contains every rational function with a pole in E.
- 3. Let $\{u_n\}$ be a sequence of harmonic function of harmonic functions on the open disc. Show that if it converges uniformly on compact subsets of the disc, then the limit is harmonic.
- 4. Show that if u is harmonic then so are $u_x = \frac{\partial u}{\partial x}$ and $u_y = \frac{\partial u}{\partial y}$.
- 5. Show that $\frac{1}{\Gamma z}$ is an entire function of order 1
- 6. Let f be a meromorphic function which has only a finite number of poles in the unit disc; whenever f(z) = 1; whenever z = 1. Prove that f is a rational function.
- 7. Let F be a subset of a metric space (X, d) such that F^- is compact. Show that F is totally bounded.

FUNCTIONAL ANALYSIS II Course code: MM242

- 1. Show that an operator T on a Hilbert Space H is unitary iff $T(e_i)$ complete orthonormal set whenever $\{e_i\}$ is.
- 2. Prove that T1 and T2 are self adjoint operators on a Hilbert space H, prove that T1 T2 +T2 T1 is self adjoint
- 3) Let T be a normal operator on a finite dimensional Hilbert space H with spectrum $\lambda_1, \lambda_2, \dots, \lambda_m$, Then prove that
- i) T is self adjoint \Leftrightarrow each λi , is real.
- ii) T is positive \Leftrightarrow each $\lambda i \geq 0$
- iii) T is unitary $\Leftrightarrow \lambda i = 1$ for each.
- 4) Show that the self adjoint operator is continuous map
- 5) Prove that a Hilbert space is seperable iff every orthonormal set in H is countable.
- 6) Show that an idem potent operator on a Hilbert space H is a projection on H iff it is normal.
- 7) Let $x_1 \ x_2 \dots x_n$, be an orthonormal set in X and $k_1, k_2, \dots k_n$ be scalars having absolute value 1. Then $k_1x_1 + k_2x_2 + \dots k_nx_n = x_1 + \dots + x_n$

CODING THEORY (SEMESTER 4) Course Code: MM243

- 1. Find the distance of $C = \{00000, 10011, 11000, 11011\}$.
- 2. Let C be the code consisting of all words of length 4 : which have been weight . Find the error patterns C detects.
- 3. Find the generator matrix for the cod { 000000, 001011, 010101, 011110, 100110, 101101, 110011, 111000} Find the dimension of C.
- 4. Find the RREF for the matrix

$$\begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

- 5. Find the number of different bases for each code c = < s > for $S = \{\ 010\ ,\ 011\ ,\ 111\ \}$ $S = \{\ 1010\ ,\ 0101\ ,\ 1111\ \}$ $S = \{0101\ ,\ 1010\ ,\ 1100\}$
- 6. Find an upper and lower bound for the maximum number of code words in linear code of
 - i) Length n = 15 and distance d = 5
 - ii) Lengh n = 15 and distance d = 3.
- 7. Find two generator of degree 4 for a linear cyclic code of length 7.

ANALYTIC NUMBER THEORY (SEMESTER 4)

Course code: MM244

- 1. Prove that (a, b) = (a + b, (a, b))
- 2. Prove that if $2^n + 1$ is prime, then n is a power of 2.
- 3. If (a, B) = 1 and $ab = c^n$, Prove that $a = x^n$, $b = y^n$ for some x and y.
- 4. Prove that $\sum_{\frac{d^2}{n}} \mu(d) = \mu^2(n)$
- 5. Prove that $\mu(x, n) = \sum_{\substack{d \ n}} \mu(d)(\frac{x}{d})$
- 6. Prove that $\sigma_1(n) = \sum_{\substack{d \ n}} \emptyset(d) \sigma_0(\frac{d}{n})$
- 7. Solve each of the following
 - i) $25x = 15 \pmod{29}$
 - ii) $5x = 2 \pmod{26}$
- 8. The prime p = 71 has 7 as a primitive root. Find all primitive roots 71 and also find a primitive roots of p^2 and $2p^2$.
- 9. Prove that $n^4 + 1$ is composite if n > 1.