M.Sc. MATHEMATICS

FIRST SEMESTER

ASSIGNMENT QUESTIONS (2024 ADMISSION)

LINEAR ALGEBRA (Course Code: MM211)

QUESTIONS

- 1. If V is finite dimensional, prove that any linear map on a subspace can be extended be a linear map on V.
- 2. Prove that the real vectorspace consisting of all continuous real valued functions on the interval [0,1] is infinite dimensional.
- 3. Prove that if there exists a linear map on V whose nullspace and range are both finite dimensional then V is finite dimensional.
- 4. Prove that if V is finite dimensional with dim V > 1 then the set of noninvertible operation on V is not a subspace of L(V).
- 5. Suppose $P \in P(z)$ has degree m . Prove that p has m distinct roots iff p and its derivative p 'have no common roots.
- 6. Find the Eigen values of $T \in L(F)$ defined by T(w, z) = (-z, w) when (i) F = R (ii) F = C.

Differential Equations (course code: MM213)

- 1. Find the general solution of the equation $y'' 2y' + 5y = 25x^2 + 12$.
- 2. Find a function on $-1 \le x \le 1$, $0 \le y \le 1$ which does not satisfy a Lipschitz condition.
- 3. Consider the differential equation y' = 2xy and find a power series expansion $\sum a_n x^n$.
- 4. Find the general solution of $(1 + x^2)y'' + 2xy' 2y = 0$ in terms of the power series in x.
- 5. In the differential equation $x^3(x-1)y'' 2x(x-1)y' + 3xy = 0$ locate and classify the singular points on the x axis.

- 6. Determine the nature of the point x=0 for the differential equation xy'' +(sinx)y = 0
- 7. Verify that $sin^{-1}(x) = xF(\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, x^2)$.
- 8. Transform the Chebyshev's equation $(1-x^2)y'' xy' + p^2y = 0$ into a hypergeometric equation by replacing x by $t = \frac{1}{2}(1-x)$ and show that its general solution near x=1 is $y = c_1 F(p, -p, \frac{1}{2}, \frac{1-x}{2})$.
- 9. Determine the nature of the point $x = \infty$ for Legendre's equation $(1 x^2)y'' -$ 2xy' + p(p+1)y = 0
- 10. Show that

 - i) $\frac{d}{dx}[J_0(x)] = -J_1(x)$
ii) $\frac{d}{dx}[xJ_1(x)] = xJ_0(x)$

REAL ANALYSIS – I (Course code: MM212)

Questions.

- 1. Determine which of the following functions are bounded variation on [0,1]
 - a) $f(x) = x \sin(\frac{1}{x})$ if $x \neq 0$ and 0 if x = 0
 - b) $f(x) = \sqrt{x} \sin x$, if $x \neq 0$ and 0 if x = 0
- 2. Give an example of a function which is not Riemann integrable but Stieljesintegrable.
- 3. If $f_n \to f$ uniformly and f_n is bounded on a set S. prove that $\{f_n\}$ is uniformly bounded on S.
- 4. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = \begin{cases} x+y & \text{if } x \neq y \\ 1 & \text{if } x = y \end{cases}$. Prove that $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exists.
- 5. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} x^2 + y^2 & \text{if both } x \text{ and } y \text{ are rationals} \\ 0 & \text{Otherwise} \end{cases}.$$

Determine the points of \mathbb{R}^2 which f_x and f_y exists.

TOPOLOGY – I (course code: MM214)

Questions.

1. Show that the set C of all complex numbers is a metric space with respect to the metric d, defined by

$$d(z_1, z_2) = \frac{|z_1 - z_2|}{[(1 + |z_1|^2)(1 + |z_2|^2]^{\frac{1}{2}}} \text{ for all } z_1, z_2 \text{ in C}.$$

- 2. Prove that A metric subspace (Y, d) of a complete metric space (X, d) is complete iff Y is closed.
- 3. Let E be a totally bounded subset of a metric space X. Show that every sequence { a_n} in E contains a Cauchy subsequence.
- 4. Let T be the class of subsets of N consisting of \emptyset and all subsets of N of the form $E_n = \{ n, n+1, n+2, \dots \}$ with $n \in \mathbb{N}$.
 - i) Show that T is a Topology on N
 - ii) List the open sets containing the positive integer 6
- 5. Prove that a Topological space is compact iff every family of closed sets 7with empty intersection has a finite subfamily with empty intersection
- 6. Prove that every infinite subset of the Topological space has a limit point.
- 7. Prove that every compact Hausdorff space is a T_4 –space.