School of Distance Education (SDE), University of Kerala

M.Sc Mathematics (Semester I)

Assignment Topics

MM212 - Real Analysis

- 1. If $f(x) = x^2 Cos(\frac{1}{x})$, $x \ne 0 \& f(0) = 0$ Prove that f is bounded variation. Show by an example by that the boundedness of f' is not necessary for f to be of bounded variation.
- 2. If f and g are complex valued functions defined by $f(t) = e^{2\pi i t}$ if $t \in [0, 1]$ and $f(t) = e^{2\pi i t}$ and f(
- 3. Let α be a continues function of bounded variation on [a,b]. Assume $g \in R(\alpha)$ on [a,b] and define $\beta(x) = \int_a^x g(t)d\alpha(t)$, if $x \in [a,b]$. Show that if f is \uparrow on [a,b] there exists a point x_0 in [a,b] such that $\int_a^b f d\beta = f(a) \int_a^{x_0} g d\alpha + f(b) \int_{x_0}^b g d\alpha$
- 4. Prove that $\sum_{n=1}^{\infty} \frac{x}{n^{\alpha}(1+nx^2)}$ converges uniformly on every finite interval in R if $\alpha > \frac{1}{2}$. Is the convergence uniform on R?
- 5. Check whether the functions are uniformly continuous or not?

$$f: \mathbb{R}^2 \to \mathbb{R}$$
 defined by

$$f(x,y) = \begin{cases} 1 & \text{if } (x,y) = (0,0) \\ \sin(x,y) & \text{if } (x,y) \neq (0,0) \end{cases}$$

6. Let $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

 $f(x,y) = \begin{cases} 0 & \text{if } (x,y) = (0,0) \\ 1 & \text{if } (x,y) \neq (0,0) \end{cases}$ Show that f is not continuous at (0,0). Although both partial derivatives of f exists at (0,0).

7. $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

 $f(x, y) = x^2 + y^2$ if x and y are both rational and f(x, y) = 0 otherwise. Determine the points of R^2 at which (i) f_x exists (ii) f_y exists.

- 8. If $f \in R(\alpha)$ on [a, b] and if $\int_a^b f d\alpha = 0$ for every f which monotonic on [a, b]. Prove α must be a constant.
- 9. Use Euler's Summation formula or integration by parts is a Rimann Sum is integral. Show that must be a constant.
- 9. Use Euler's Summation formula or integration by parts is a Rimann Sum is integral. Show that $\sum_{k=1}^{n} \frac{1}{x} = logn \int_{1}^{n} \frac{x [x]}{x^2} dx + 1$
- 10. Show that a sequence of functions for which $\lim_{n\to\infty} \int_0^1 f_n(x) dx \neq \int_0^1 \lim_{n\to\infty} f_n(x) dx$

MM-213 Paper III- Differential Equations

- 1. Explain the method of undetermined coefficients for finding a particular integral of the equation $y'' + py' + qy = e^{ax}$, where p, q and a are constants.
- 2. Using Picard's method to find y_1 , y_2 and y_3 of $y' = y^2$, $y_{(0)} = 1$ and compare with the exact solution.
- 3. Solve by variation of parameters.

$$(x^2-1)y^{''}-2xy^{'}+2y=(x^2-1)^2$$
.

4. Find the general solution of the Gauss' hyper geometric equation.

$$x(1-x)y^{''} + [c - (a+b+1)x]y^{'} - aby = 0$$
 near the singular point $x = 0$.

- 5. Consider the equation y'' = xy' + y = 0. Find its general solution is the form $y = a_0y_1 + a_1y_2(x)$ where $y_1(x)$ and $y_2(x)$ are power series.
- 6. Find the general solution of $(x^2 x 6)y'' + (5 + 3x)y' + y = 0$ at x = 3.

- 7. Obtain the orthogonal property to Legendre polynomials.
- 8. Find the relation between Bessel functions and Trigonometric functions.

9. Show that
$$\frac{2p}{x}$$
. $J_p(x) = J_{p-1}(x) + J_{p+1}(x)$.

- 10. Find the general integral of yzp + xzq = xy.
- 11. By Jacobis method, solve the equation:

$$z^2 + zu_x - u_x^2 - u_y^2 = 0.$$

12. Show that the equations:

f=xp-yq-x=0 and g= $x^2p + q - xz = 0$ are compatible and find one – parameter family of common solutions.

Reduce the equation.

- 13. $4u_{xx} 4u_{xy} 5u_{yy} = 0$ to a canonical form.
- 14. Solve the equation:

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{e^2} \frac{\partial^2 y}{\partial t^2}$$
; $0 < x < \infty$, $t > 0$

The initial conditions are

$$Y(x,0) = u(x); y_1(x,0) = v(x), x \ge 0.$$

The boundary conditions is Y(0,t) = 0, $t \ge 0$.

- 15. State the following Boundary value problems
- i. The Dirichiet problem
- ii. The Neumann problem
- iii. The Robin problem.

MM214- Topology I

1. If (X, d) is a metric space. Then prove that there is a bounded metric on X which is equivalent to d.

2 Suppose X is a metric space, A and B are sub sets of X. Then

- a) Prove that $\overline{A \cup B} = \overline{A} \cup \overline{B}$
- b) Prove that $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$
- c) Find an example to show that we do not generally get equality in part (b)

3. Describe the boundaries of the following subsets of R.

- a) Q b) $^{R}/_{O}$ c)[0,1] d) (0,1)
- e) **Z**

4. Let $(x_n: n \in W)$ is a convergent sequence in a metric space (X, d). Then prove that it is a Cauchy sequence. Is the converse true? Justify your answer.

5. Prove that any open interval (a, b) is homeomorphic to (0,1).

6. If $X_1 \times X_2$ is a nonempty product space, then prove that the projections π_1 and π_2 are both open, continous and onto functions but need not be closed.

7. Prove that the Topologies Sine Curve is connected but not pathwise connected.

8. Prove that if $f:X\to Y$, then f is continuous if nd only if $f^{-1}(B)$ is open in X for each member B of some base for Y.Prove that the same result with "base "replaced by "sub base".

9. Suppose X is an infinite set with co finite topology .Prove that X is T_1 but not T_2 .

10. Prove that if X is Compact, Y is T_2 and f:X \rightarrow Y is one to one,onto and continous, thyen f is homeomorphism.

Assignment Question

MM 211 - Linear Algebra

- 1. For each of the following subsets of F^3 , determine whether it is a subspace of F^3 .
 - a. $\{(x, x_2, x_3) \in F^3 : x_1 + 2x_2 + 3x_3 = 0\}$
 - b. $\{(x, x_2, x_3) \in F^3 : x_1 + 2x_2 + 3x_3 = 4\}$
 - c. $(x, x_2, x_3) \in F^3 : x_1 x_2 x_3 = 0$
 - d. $(x, x_2, x_3) \in F^3$: $x_1 = 5x_3$
- 2. Prove that if V is linearly independent in V, then so is the list $\{v_1 v_2, v_2 v_3, ..., v_{n-1} v_n, v_n\}$
- 3. Let *U* be the subspace of R^5 defined by $U = \{(x_1, x_2, x_3, x_4, x_5)\} \in R^5 : x_1 = 3x_2 \& x_3 = 7x_4\}$ Find a basis of *U*.
- 4. Give an example of a function $f: \mathbb{R}^2 \to \mathbb{R}$ such that f(av) = af(v) for all $a \in \mathbb{R}$, and all $v \in \mathbb{R}^2$, but f is not linear.
- 5. Prove that if T is a linear map F^4 to F^2 such that null $T = \{(x_1, x_2, x_3, x_4) \in F^4 : x_1 = 5x_2 \text{ and } x_3 = 7x_4\}$ then T is surjective.
- 6. Prove that there does not exist a linear map from F^5 to F^2 whose null space equals

$$\{x_1, x_2, x_3, x_4, x_5 \in F^5 : x_1 = 3x_2 \& x_3 = x_4 = x_5\}$$

- 7. Suppose that v is finite dimensional and $S, T \in L(V)$. Prove that ST is invertible if and only if both S and T are invertible.
- 8. Suppose $T \in L(V)$. Prove that if $U_1, U_2, ..., U_m$ are subspaces of V invariant under T, then $U_1 + U_2 + ... + U_m$ is invariant under T.
- 9. Define $T \in L(F^2)$ by T(w, z) = (z, w). Find all eigen values and eigen values of T.
- 10. Find all eigenvalues and eigen vectors for $T \in L(F^3)$ by $T(z_1, z_2, z_3) = (2z_2, 5z_3)$
- 11. Find all generalized eigen vectors of $T \in L(C^2)$ defined by i. T(w, z) = (z, v); (ii) T(w, z) = (-z, w)
- 12. Give an example of an operator on C^4 whose characteristic polynomial equals i. $(z-7)^2$ $((z-8)^2$; ii. $z(z-1)^2$
- 13. Prove that if v is an inner product space and $T \in \alpha(v)$ then trace $T^* = tarace T$