MSc Mathematics I SEM - 2019

Assignment

MM 211 LINEAR ALGEBRA

1. (a). Prove that arbitrary intersection of subspaces of a vector space V is again a subspace of V
(b). Prove that Union of two subspaces is a subspace if one of the space is contained in the other
2. Prove each of the following subsets of F^{2} determine whether it is a subspace of $\left(F^{3}\right)$
a. $S_{1}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in F^{3}: x_{1}+2 x_{2}+3 x_{3}=0\right\}$
b. $S_{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in F^{3}: x_{1}+x_{2}+x_{3}=0\right\}$
3. Prove that the real vector space consisting of all continuous real functions as the interval $[0,1]$ is infinite dimensional .
(h) Prove that if $\left(v_{1}, v_{2}, \ldots . v_{n}\right)$ is linearly independent in V so is

$$
\left(v_{1},-v_{2}, v_{2},-v_{3} \ldots v_{n-1},-v_{n}, v_{n}\right)
$$

4. Show that the mapping $T: R^{2} \rightarrow R^{3}$ defined by $T(a, b)=(a+b, a-b, b)$ is linear Transformation Find range, rank, null space and nullity of T.
5. Find the matrix of livener transformation T on R^{3} defined as $T(a, b, c)=(2 b+c, a-4 b, 3 a)$ with respect to the ordered basis B and also with respect to the orders basis, $\{(1,1,1),(1,1,0),(1,0,0)\}$
6. a). Suppose V is finite dimensional and $S, T \in L(V)$

Prove that $S T=I$ if $T S=I$

1) define $T \in L\left(C^{2}\right)$ by $T(w, z)=(z, 0)$

Find all generalized eigen vectors of T.
7. a) Find all Characteristic values and characteristic vectors of the following matrix

$$
\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

b). Give an example of an operator in c^{4} whose characteristic polynomial is

$$
(z-T)^{2}(z-8)^{2}
$$

8. a). Prove or give a counter example. If $S, T \in L(V)$ then $\operatorname{det}(S+T)=\operatorname{det} S+\operatorname{det} T$
b). If $A B$ and $B A$ are square matrices of the same order then prove that

$$
A B=I \Rightarrow B A=I
$$

Assignment

MSc Mathematics - 2019

MM 212 REAL ANALYSIS $\left(S_{1}\right)$

1. a). Prove that a function of bounded variation is bounded
b). Determine which of the following functions are of bounded variation on $[0,1]$
i). $\quad f(x)=x^{2} \sin 1 / x$ if $x \neq 0, \quad f(0)=0$
ii). $\quad f(x)=\sqrt{x} \sin x$ if $x \neq 0, f(0)=0$
2. a). Let α be a continuous function of bounded variation as $[a, b]$. Assume $g \in R(\alpha)$ an $[a, b]$ and define $\beta(x)=\int_{a}^{x} g(t) d \alpha(t)$ if $x \in[a, b]$ show that $f \uparrow$ an $[a, b]$ and threre exists a point x_{0} in $[a, b]$ such that

$$
\int_{a}^{b} f d \beta=f(a) \int_{a}^{x_{0}} g d \alpha+f(x) \int_{x_{0}}^{b} g d_{k}
$$

b). If $\alpha \uparrow$ as $[a, b]$ and $f \in R(\alpha)$ as $[a, b]$, then prove that $f^{2} \in R(\alpha)$ on $[a, b]$.
3. a). If $f_{n} \rightarrow f$ uniformly and f_{n} is bounded an a set S prove that $\left[f_{n}\right]$ is uniformly founded.
b). Let $f_{n}(x)=\frac{x}{1+4 x^{2}} y x \in R, n=1,2,3 \ldots$.

Find the limit function f of the sequence $\left\{f_{n}\right\}$ and the limit function g of the sequence $\left\{f_{n}^{1}\right\}$. Also prove that $f^{\prime}(0) \neq g(0)$.
4. a). Discuss the continuity of the function

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x^{2} y}{x^{2}+y^{2}} & \text { for }(x, y) \neq 0 \\
0 & \text { for }(x, y)=0
\end{array}\right.
$$

b). Let $f: R^{2} \rightarrow R$ be defined by

$$
f(x, y)=\left\{\begin{array}{cc}
x+y & \text { if } x \neq 0 \\
1 & \text { if } x=y
\end{array}\right.
$$

Prove that $f(x, y)$ does not exists as

$$
(x, y) \rightarrow(0,0)
$$

I.a). Prove that $f: R^{2} \rightarrow R$ defined by

$$
f(x, y)=|x y| \text { is differentiable at }(0,0) \text { and } \nabla f(0,0)-(0,0)
$$

b). Find the directional derivative of at point $(0,0)$

$$
f: R^{2} \rightarrow R \text { defined for } f(x, y)=\sqrt{x^{2}+y^{2}}
$$

Assignment

MSc Mathematics $\left(S_{1}\right)$ - 2019

MM 213 DIFFERENTIAL EQUATIONS

1. a) Find a particular solution of

$$
y^{\prime \prime}-y^{\prime}-b y=e^{-x}
$$

b). Find the exact solution of the initial value problem $y^{\prime}=y^{2}, y(0)=1$ starting with
$y_{0}(x)=1$. Apply Picard's method to calculate $y_{1}(x), y_{2}(x), y_{3}(x)$ and compare these results with exact solution.
2. 1) Express $\sin ^{-1}(x)$ in the form of a power series $\sum a_{n} x^{n}$ by solving $y^{\prime}=\left(1-x^{2}\right)^{1 / 2}$ in two ways. Use this result to obtain the formula

$$
\frac{\pi}{6}=\frac{1}{2}+\frac{1}{2} \cdot \frac{1}{32^{3}} \times \frac{1}{2} \frac{3}{4} \cdot \frac{1}{5 \times 2^{5}} \ldots \ldots \ldots
$$

2). Find the general solution of $\left(1+x^{2}\right) y^{11}+2 x y^{1}-2 y=0$ in terms of the power series x. Can you express this solution by mean of elementary function.
3. a). Show that $P_{2 x+1}(0)=0$ and

$$
P_{2 n}(0)=\frac{(-1)^{n} 1 \cdot 3 \cdot 5 \ldots .(2 n-1)}{2^{n} n!}
$$

b). Draw the graph of $J_{0}(x)$ and $J_{1}(x)$
4. a). Prove the following
i). $\frac{d}{d x}\left(x^{p} J_{p}(x)\right)=x^{p} J_{p^{-1}}(x)$
ii). $J_{p}^{1}(x)-\frac{p}{x} J_{p}(x)=-J_{p+1}(x)$
b). Find the general integral of
i) $z(x p-y q)=y^{2}-x^{2}$
ii) $y z d x+x z d y+x y d z=0$
5. a) Show that the equations
$f=p^{2}+q^{2-1}=0$ and $g=\left(p^{2}+q^{2}\right) x-p z=0$ are compactable and find the corresponding one parameter family of common solution
b). Reduce the following into canonical form and solve whenever possible

$$
4 U_{x x}-4 U_{x y}+5 U_{x y}=0
$$

Assignment

MSc Mathematics - 2019

MM 214-TOPOLOGY - I

1. suppose X is a metric space and A and B are subsets of X.
(a). Prove that $\overline{A \cup B}=\bar{A} \cup \bar{B}$
(b). Prove that $\overline{A \cup B} \subset \bar{A} \cap \bar{B}$
(c). Find an example to show that we do not generally get equality in part (b)
2. Suppose X, Y and Z are metric spaces and $f: X \rightarrow Y$ and $g: X \rightarrow Z$ are continuous function. Prove that $g . f: X \rightarrow Z$ is continuous.
3. Prove that the definitions of closure that we gave for metric spaces is equivalent to the definition that we gave in for topological spaces.
4. Suppose that $\left(X_{n}, d_{n}\right)$ is a metric spaces for each $n \in w$ and each d_{n} is bounded by
Let $X={ }_{n=0}^{\infty} X_{n}$ and define d on X by $d(x, y)=\sum_{n=0}^{\infty} \frac{d_{n\left(X_{N} U_{N}\right)}}{2^{n}}$. Prove that d is a metric an X.
5. Prove that any closed subspace of locally compact space is locally compact.
6. Show that any point in $[0,1]$ can be represented as $\sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}}$ where for each u $n, a_{n} \in\{0,1,2\}$.
7. Give an example for topological space which is connected but not path wise connected Justify your answer.
8. Suppose u is a collection of open sets in $X \times Y$ where Y is compact and u covers $\{x\} \times Y$ where $x \in Y$. Show that there exists a finite sub collection $u_{1} C u$ and an openset $V \subset \chi$ with $x \in \chi$ such that u_{1} covers $V \times Y$.
9. Is it true that every separable first countable space is second countable space. Prove or find counter example.
10.Prove that if a and b are real numbers with $a<b$, then (a, b) is homcomorphic to R.

Assignment

MSc Mathematics (Semester) - 2019
MM 221 Algebra

1. Construct a Cayley table for U_{12}.
2. Show that the set of all positive rational numbers form an abelian group under the composition defined by $a+b=\frac{a b}{2}$
3. In z_{12}, find $\langle 6\rangle,\langle 9\rangle,\langle 11\rangle$. Is t_{12} cyclic?
4. Prove that z_{n} has an even number of generators if $n>2$.
5. If $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right) \quad B=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right)$

Find $A B$ and $B A$
6. Show that the external direct product of groups is itself a group.
7. Prove that A_{n} is a normal subgroup p of s_{n}.
8. Prove that every group of order 65 is cyclic.
9. Find all possible direct products for G with order p^{4}
10.How many sylow 5 groups of s_{5} are there?
11.Find all abelian groups of order 27 upto isomorphism.
12. Give an example of a subset of a ring that is a subgroup under addition but not a subring.
13.Explain why a finite ring must have a non zero Characteristic.
14. Show that $R(x) /<x^{2}+1>$ is a field.
15.Determine all ring Homomorphism from Q and Q
16.Prove that the ideal $\langle x\rangle$ in $Q[x]$ is maximal.
17. In $Z[i]$, show that 3 is irreducible but 2 and 5 are not.

Assignment

MSc Mathematics (Semester-2) - 2019

MM 223 Topology - II

1. Prove that the one point compactification of the real line R is homeomorphic to a circle.
2. Prove that the projection $\pi_{1}: R^{2} \rightarrow R$ is continues us open and onto an A neet not be closed.
3. If X is a topological space and $x \in X$. True prove that u_{x} at x is a filter base.
4. Prove that $\pi_{1}\left(s^{1} \times s^{1},(1, D)\right) \cong f \times f$
5. Prove that a simple with vertices $\left\{v_{0}, v_{1}, v_{2} \ldots . v_{n}\right\}$ is the smallest convex set containing $\left\{v_{0}, v_{1}, v_{2} \ldots . . v_{n}\right\}$.
6. Prove that the bary centre of simplex is unique.
7. Prove that the quotient topology an X is the strongest topology an Y which will make f a continous map.
8. Prove that a filter f_{x} on the space X converges to x if and only if the net generated by the file f_{x} converge to x.
9. Prove that $\pi,\left(R^{2}, 0\right)=(e)$.
10. Prove that every tree is contractible.

Assignment

B.Sc Mathematics (Semester-1) - 2019

MM 1141

1. In Z define $a \sim b$ if (1) $a b>0(2) a+b$ is divisible by 3 . Check whether ${ }^{\sim} \sim$ is an equivalence relation in both cases.
2. For all $n \geq 1$ find the sum of $1^{4}+2^{4}+3^{4} \ldots \ldots . . .+n^{4}$ by using induction.
3. Find the g.c.d of 17017 and 18900 .
4. Find the least non negative residue of $m^{10}(\bmod 1)$ for each number $m, 1 \leq m \leq 10$. .
5. Solve $12 x \equiv 5 \bmod (47)$
6. Find the natural domain of the function
(a) $f(x)=\sqrt{\frac{x^{2}-4}{x-4}}$
(b) $f(x)=\frac{3}{2-\cos x}$
7. Sketch the graph of $y=|x-3|+2$.
8. Use the graph of $y=x^{1 / 3}$ to sketch the graph of $y=|x|^{1 / 3}$.
9. Find the parametric equations for the portion of the parabola $x=y^{2}$ joining $(1,-1)$ and $(1,1)$ oriented down to up.
10. Let $f(x)=\left\lvert\, \begin{array}{ll}x-1 & \text { if } x \leq 3 \\ 3 x-7 & \text { if } x>3\end{array}\right.$
Find (a) $\lim _{x \rightarrow \overline{3}} f(x)$
(b) $\lim _{x \rightarrow 3^{x}} f(x)$
(c) $\lim _{x \rightarrow 3} f(x)$
11. Show that the function defined by $f(x)=\sin \left(x^{2}\right)$ is a continuous function
12. Let $f(x)=\left\lvert\, \begin{aligned} & x^{2} \sin 1 / x \text { if } x \neq 0 \\ & o \text { if } x=0\end{aligned}\right.$
a. Show that f is continuous at $x=0$
b. Find $f^{\prime}(0)$
c. Show that f^{\prime} is not continuous at $x=0$
13. Find all rational values of r such that $y=x^{r}$ satisfies the equation $3 x^{2} y^{\prime \prime}+4 x y^{\prime}=z y=0$
14. Sketch the ellipse $a(x-1)^{2}+16(y-3)^{2}=144$
15. Rotate the co-ordinate axes to remove the $x y$ - term and name the conic $6 x^{2}+24 x y-y^{2}-12 x+24 y+11=0$
16.
