MSc Mathematics I SEM – 2019

Assignment

MM 211 LINEAR ALGEBRA

1. (a) . Prove that arbitrary intersection of subspaces of a vector space V is again a subspace of V

(b). Prove that Union of two subspaces is a subspace if one of the space is contained in the other

2. Prove each of the following subsets of F^2 determine whether it is a subspace of (F^3)

a.
$$S_1 = \{(x_1, x_2, x_3) \in F^3 : x_1 + 2x_2 + 3x_3 = 0\}$$

b. $S_2 = \{(x_1, x_2, x_3) \in F^3 : x_1 + x_2 + x_3 = 0\}$

- 3. Prove that the real vector space consisting of all continuous real functions as the interval [0,1] is infinite dimensional.
- (h) Prove that if $(v_1, v_2, ..., v_n)$ is linearly independent in V so is

$$(v_1, -v_2, v_2, -v_3, \dots, v_{n-1}, -v_n, v_n)$$

- 4. Show that the mapping $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(a,b) = (a+b,a-b,b) is linear Transformation Find range, rank, null space and nullity of T.
- 5. Find the matrix of livener transformation T on R^3 defined as T(a,b,c) = (2b+c,a-4b,3a) with respect to the ordered basis B and also with respect to the orders basis, $\{(1,1,1),(1,1,0),(1,0,0)\}$
- a). Suppose V is finite dimensional and S,T ∈ L(V)
 Prove that ST = I if TS = I
 1) define T ∈ L(C²) by T(w,z)=(z,0)

Find all generalized eigen vectors of T.

7. a) Find all Characteristic values and characteristic vectors of the following matrix

$$\begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

b). Give an example of an operator in c^4 whose characteristic polynomial is

$$(z-T)^2(z-8)^2$$

8. a). Prove or give a counter example. If S,T ∈ L(V) then det (S+T) = detS + detT
b). If AB and BA are square matrices of the same order then prove that AB = I ⇒ BA = I

MSc Mathematics – 2019

MM 212 REAL ANALYSIS (S_1)

- 1. a). Prove that a function of bounded variation is bounded
 - b). Determine which of the following functions are of bounded variation on [0,1]

i).
$$f(x) = x^2 \sin \frac{1}{x}$$
 if $x \neq 0$, $f(0) = 0$
ii). $f(x) = \sqrt{x} \sin x$ if $x \neq 0$, $f(0) = 0$

2. a). Let α be a continuous function of bounded variation as [a,b]. Assume $g \in R(\alpha)$

an [a,b] and define $\beta(x) = \int_{a}^{x} g(t) d\alpha(t)$ if $x \in [a,b]$ show that $f \uparrow$ an [a,b] and there exists a point x in [a,b] such that

threre exists a point x_0 in [a,b] such that

$$\int_{a}^{b} f d\beta = f(a) \int_{a}^{x_{0}} g d\alpha + f(x) \int_{x_{0}}^{b} g d_{k}$$

b). If $\alpha \uparrow$ as [a,b] and $f \in R(\alpha)$ as [a,b], then prove that $f^2 \in R(\alpha)$ on [a,b].

3. a). If $f_n \to f$ uniformly and f_n is bounded an a set S prove that $[f_n]$ is uniformly founded.

b). Let
$$f_n(x) = \frac{x}{1+4x^2}$$
 $yx \in R, n = 1,2,3...$

Find the limit function f of the sequence $\{f_n\}$ and the limit function g of the sequence $\{f_n^1\}$. Also prove that $f'(0) \neq g(0)$.

4. a). Discuss the continuity of the function

$$f(x, y) = \begin{cases} \frac{x^2 y}{x^2 + y^2} & \text{for } (x, y) \neq 0\\ 0 & \text{for } (x, y) = 0 \end{cases}$$

b). Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x, y) = \begin{cases} x+y & \text{if } x \neq 0\\ 1 & \text{if } x=y \end{cases}$$

Prove that f(x, y) does not exists as $(x, y) \rightarrow (0, 0)$

I.a). Prove that $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x, y) = |xy|$$
 is differentiable at $(0,0)$ and $\nabla f(0,0) - (0,0)$

b). Find the directional derivative of at point (0,0)

$$f: \mathbb{R}^2 \to \mathbb{R}$$
 defined for $f(x, y) = \sqrt{x^2 + y^2}$

MSc Mathematics $(S_1) - 2019$

MM 213 DIFFERENTIAL EQUATIONS

1. a) Find a particular solution of

$$y'' - y' - by = e^{-x}$$

b). Find the exact solution of the initial value problem $y' = y^2$, y(0) = 1 starting with

 $y_0(x)=1$. Apply Picard's method to calculate $y_1(x), y_2(x), y_3(x)$ and compare these results with exact solution.

2. 1) Express $\sin^{-1}(x)$ in the form of a power series $\sum a_n x^n$ by solving $y' = (1 - x^2)^{\frac{1}{2}}$ in two ways. Use this result to obtain the formula

$$\frac{\pi}{6} = \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{32^3} \times \frac{1}{2} \frac{3}{4} \cdot \frac{1}{5 \times 2^5} \dots$$

2). Find the general solution of $(1+x^2)y^{11} + 2xy^1 - 2y = 0$ in terms of the power series x. Can you express this solution by mean of elementary function.

3. a). Show that $P_{2x+1}(0) = 0$ and

$$P_{2n}(0) = \frac{(-1)^n 1.3.5...(2n-1)}{2^n n!}$$

- b). Draw the graph of $J_0(x)$ and $J_1(x)$
- 4. a). Prove the following

i).
$$\frac{d}{dx} \left(x^p J_p(x) \right) = x^p J_{p^{-1}}(x)$$

- ii). $J_p^1(x) \frac{p}{x} J_p(x) = -J_{p+1}(x)$
- b). Find the general integral of

i)
$$z(xp - yq) = y^2 - x^2$$

- ii) yz dx + xz dy + xy dz = 0
- 5. a) Show that the equations

 $f = p^2 + q^{2-1} = 0$ and $g = (p^2 + q^2)x - pz = 0$ are compactable and find the corresponding one parameter family of common solution

b). Reduce the following into canonical form and solve whenever possible

$$4U_{xx} - 4U_{xy} + 5U_{xy} = 0$$

MSc Mathematics – 2019

MM 214 - TOPOLOGY - I

- 1. suppose X is a metric space and A and B are subsets of X.
 - (a). Prove that $\overline{A \cup B} = \overline{A} \cup \overline{B}$
 - (b). Prove that $\overline{A \cup B} \subset \overline{A} \cap \overline{B}$
 - (c). Find an example to show that we do not generally get equality in part (b)
- 2. Suppose X, Y and Z are metric spaces and $f: X \to Y$ and $g: X \to Z$ are continuous function. Prove that $g.f: X \to Z$ is continuous.
- 3. Prove that the definitions of closure that we gave for metric spaces is equivalent to the definition that we gave in for topological spaces.
- 4. Suppose that (X_n, d_n) is a metric spaces for each $n \in w$ and each d_n is bounded by

Let
$$X =_{n=0}^{\infty} X_n$$
 and define d on X by $d(x, y) = \sum_{n=0}^{\infty} \frac{d_n(X_n U_n)}{2^n}$. Prove that d

is a metric an X.

- 5. Prove that any closed subspace of locally compact space is locally compact.
- 6. Show that any point in [0,1] can be represented as $\sum_{n=1}^{\infty} \frac{a_n}{3^n}$ where for each u

- 7. Give an example for topological space which is connected but not path wise connected Justify your answer.
- 8. Suppose *u* is a collection of open sets in $X \times Y$ where *Y* is compact and *u* covers $\{x\} \times Y$ where $x \in Y$. Show that there exists a finite sub collection u_1Cu and an openset $V \subset \chi$ with $x \in \chi$ such that u_1 covers $V \times Y$.
- 9. Is it true that every separable first countable space is second countable space. Prove or find counter example.
- 10.Prove that if a and b are real numbers with a < b, then (a,b) is homeomorphic to R.

 $n, a_n \in \{0,1,2\}.$

MSc Mathematics (Semester) – 2019

MM 221 Algebra

- 1. Construct a Cayley table for U_{12} .
- 2. Show that the set of all positive rational numbers form an abelian group under the composition defined by $a+b=\frac{ab}{2}$
- 3. In z_{12} , find <6>, <9>, <11>. Is t_{12} cyclic ?
- 4. Prove that z_n has an even number of generators if n > 2.
- 5. If $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ $B = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$

Find AB and BA

- 6. Show that the external direct product of groups is itself a group.
- 7. Prove that A_n is a normal subgroup p of s_n .
- 8. Prove that every group of order 65 is cyclic.
- 9. Find all possible direct products for G with order p^4
- 10. How many sylow 5 groups of s_5 are there ?
- 11. Find all abelian groups of order 27 upto isomorphism.
- 12. Give an example of a subset of a ring that is a subgroup under addition but not a subring.
- 13.Explain why a finite ring must have a non zero Characteristic.
- 14.Show that $R(x)/\langle x^2+1\rangle$ is a field.
- 15. Determine all ring Homomorphism from Q and Q
- 16.Prove that the ideal $\langle x \rangle$ in Q[x] is maximal.
- 17.In Z[i], show that 3 is irreducible but 2 and 5 are not.

MSc Mathematics (Semester-2) – 2019

MM 223 Topology – II

- 1. Prove that the one point compactification of the real line R is homeomorphic to a circle.
- 2. Prove that the projection $\pi_1: \mathbb{R}^2 \to \mathbb{R}$ is continues us open and onto an A neet not be closed.
- 3. If X is a topological space and $x \in X$. True prove that u_x at x is a filter base .

4. Prove that
$$\pi_1(s^1 \times s^1, (1, D)) \cong f \times f$$

- 5. Prove that a simple with vertices $\{v_0, v_1, v_2, \dots, v_n\}$ is the smallest convex set containing $\{v_0, v_1, v_2, \dots, v_n\}$.
- 6. Prove that the bary centre of simplex is unique.
- 7. Prove that the quotient topology an X is the strongest topology an Y which will make f a continous map.
- 8. Prove that a filter f_x on the space X converges to x if and only if the net generated by the file f_x converge to x.
- 9. Prove that $\pi, (R^2, 0) = (e)$.
- $10. \ \mbox{Prove that every tree is contractible.}$

B.Sc Mathematics (Semester-1) – 2019

MM 1141

- 1. In Z define $a \sim b$ if (1) ab > 0(2)a + b is divisible by 3. Check whether '~' is an equivalence relation in both cases.
- 2. For all $n \ge 1$ find the sum of $1^4 + 2^4 + 3^4 + 3^4 + n^4$ by using induction.
- 3. Find the g.c.d of 17017 and 18900.
- 4. Find the least non negative residue of $m^{10} \pmod{1}$ for each number $m, 1 \le m \le 10$.
- 5. Solve $12x \equiv 5 \mod (47)$
- 6. Find the natural domain of the function

(a)
$$f(x) = \sqrt{\frac{x^2 - 4}{x - 4}}$$
 (b) $f(x) = \frac{3}{2 - \cos x}$

- 7. Sketch the graph of y = |x-3|+2.
- 8. Use the graph of $y = x^{\frac{1}{3}}$ to sketch the graph of $y = |x|^{\frac{1}{3}}$.
- 9. Find the parametric equations for the portion of the parabola $x = y^2$ joining (1,-1) and (1,1) oriented down to up.

10. Let
$$f(x) = \begin{vmatrix} x-1 & \text{if } x \le 3\\ 3x-7 & \text{if } x > 3 \end{vmatrix}$$

Find (a) $\lim_{x \to \overline{3}} f(x)$ (b) $\lim_{x \to 3^x} f(x)$ (c) $\lim_{x \to 3} f(x)$

11. Show that the function defined by $f(x) = \sin(x^2)$ is a continuous function

12. Let
$$f(x) = \begin{vmatrix} x^2 \sin \frac{1}{x} & \text{if } x \neq 0 \\ o & \text{if } x = 0 \end{vmatrix}$$

- a. Show that f is continuous at x = 0
- b. Find f'(0)
- c. Show that f' is not continuous at x = 0
- 13. Find all rational values of r such that $y = x^r$ satisfies the equation $3x^2y'' + 4xy' = zy = 0$
- 14. Sketch the ellipse $a(x-1)^2 + 16(y-3)^2 = 144$
- 15. Rotate the co-ordinate axes to remove the xy- term and name the conic $6x^{2} + 24xy - y^{2} - 12x + 24y + 11 = 0$