

Reg. No.:

Name :

Sixth Semester B.Sc. Degree Examination, April 2019 First Degree Programme under CBCSS MATHEMATICS Core Course

Core Course MM 1641 : Real Analysis – II (2014 Admission Onwards)

Time: 3 Hours Max. Marks: 80

ote eldelmenently SECTION - I ote eldelmenellib eng p bns 111 .31

All the first 10 questions are compulsory. Each carries 1 mark.

- 1. The function $g: \mathbb{R} \to \mathbb{R}$ defined by g(x) = 2x for x rational, and g(x) = x + 3 for x irrational is continuous at $x = \underline{\hspace{1cm}}$
- Give an example for a function on [0, 1] that is discontinuous at every point of [0, 1] but | f | is continuous on [0, 1].
- 3. Find the points at which the function f(x) = |x| + |x + 1| is not differentiable.
- 4. Using L'Hospital's Rule, find $\lim_{x\to 1} \frac{\ln x}{x-1}$.
- 5. Define a convex function on an interval $I \subseteq \mathbb{R}$.
- 6. Let $g(x) = |x^3|, x \in \mathbb{R}$. Find g'(x) for $x \neq 0$.
- 7. The norm of the partition P = (0, 1.5, 2, 3.4, 4) is _____
- 8. If $F(x) = \frac{1}{2}x^2$ for all $x \in [a,b]$, is the antiderivative of f on [a,b], evaluate $\int_a^b f$.
- 9. Define a step function.
- 10. If J=[c,d] is a subinterval of [a,b] and $\phi_j(x)=1$ for $x\in J$ and $\phi_j(x)=0$, elsewhere in [a,b], then evaluate $\int_a^b \phi_J$.

SECTION - II

Answer any 8 questions from this Section. Each question carries 2 marks.

- 11. Show that the Dirichlet's function defined on \mathbb{R} by, $f(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational} \end{cases}$
- 12. If I = [a, b] is a closed and bounded interval and $f : I \to \mathbb{R}$ is continuous on I, prove that f is bounded on I.
- 13. Show that the function $f(x) = \sin x$ is continuous on \mathbb{R} .
- 14. If $m \in \mathbb{Z}$, $n \in \mathbb{N}$ and x > 0, prove that $x^{\frac{m}{n}} = (x^m)^{\frac{1}{n}}$.
- 15. If f and g are differentiable at c, show that f g is differentiable at c and (fg)'(c) = f'(c)g(c) + f(c)g'(c)
- 16. Find f'(0), if $f(x) =\begin{cases} x^2 \sin\left(\frac{1}{x}\right), & \text{for } x \neq 0 \\ 0 & \text{for } x = 0 \end{cases}$
- 17. If $f: I \to \mathbb{R}$ has a derivative at $c \in I$, show that f is continuous at c.
- 18. Explain briefly the tagged partition of a closed interval [a, b].
- 19. If f, $g \in R[a,b]$ show that $f + g \in R[a,b]$.
- 20. State and prove boundedness theorem for Riemann integral.
- 21. Show that the set Q₁ of rational numbers in [0, 1] is a null set.
- 22. If c is an interior point of an interval I at which $f: I \to \mathbb{R}$ has an extremum and if f'(c) exists, then prove that f'(c) = 0.

SECTION - III

Answer any 6 questions from this Section. Each question carries 4 marks.

- 23. State and prove Maximum Minimum Theorem.
- 24. State and prove Caratheodry Theorem.

- 25. If $f(x) = \begin{cases} 2, & 0 \le x < 1 \\ 1, & \text{if } 1 \le x \le 2 \end{cases}$. Show that $f \in R[0, 2]$ and evaluate the integral.
- 26. State and prove squeeze theorem.
- 27. Let $I \subseteq \mathbb{R}$ be an interval and let $f: I \to \mathbb{R}$ be monotone on I. Then prove that the set of points $D \subseteq I$ at which f is discontinuous is a countable set.
- 28. State and prove Rolle's Theorem.
- 29. Let $g: \mathbb{R} \to \mathbb{R}$ be defined by $g(x) = x + 2x^2 \sin\left(\frac{1}{x}\right)$, for $x \neq 0$ and g(0) = 0. Show that g is not monotonic in any neighborhood of 0.
- 30. Prove that $1 \frac{1}{2}x^2 \le \cos x$ for all $x \in \mathbb{R}$.
- 31. If F, G are differentiable on [a, b], and f = F', g = G' belongs to R[a, b], then prove that $\int_a^b fG = FG/\frac{b}{a} \int_a^b Fg$.

SECTION - IV

Answer any 2 questions from this Section. Each question carries 15 marks.

- 32. a) State and prove location of roots theorem.
 - b) State and prove continuous inverse theorem.
- 33. a) State and prove Cauchy criterion for Riemann integrability.
 - b) If $f: [a, b] \to \mathbb{R}$ is continuous on [a, b], then prove that $f \in R[a, b]$.
- 34. a) State and prove additivity theorem.
 - b) If f and g are Riemann Integrable prove that fg is Riemann Integrable.
- 35. a) Let I be an open interval and let f: I → ℝ have a second derivative on I. Then prove that f is a convex function if and only if f"(x) ≥ 0 for all x ∈ I.
 - b) Use Newton's Method to find an approximate value of $\sqrt{2}$.

Reg. No.: on all a MONTONE of their prove that

Name :

Sixth Semester B.Sc. Degree Examination, April 2019 First Degree Programme Under CBCSS Mathematics Core Course – XI

Core Course – XI MM 1643 – COMPLEX ANALYSIS – II (2014 Admn. Onwards)

Time: 3 Hours Max. Marks: 80

SECTION - I

All the first 10 questions are compulsory. Each carries 1 mark.

- 1. Write the power series expansion of $f(z) = \frac{1}{1+z}$ in the disc |z| < 1.
- 2. Test whether the series $\sum_{n=0}^{\infty} \frac{z^n}{n!}$ is convergent in C.
- 3. What are the singular points of ze¹?
- 4. Define essential singularity for a function f(z) at z = a.
- 5. Describe the nature of singularity for $f(z) = \frac{1 e^{2z}}{z^4}$ at z = 0.
- 6. What is the order of the pole for $f(z) = \frac{1}{(2\sin z 1)^2}$?
- 7. Find the residue of $f(z) = \frac{e^z}{z^2}$ at its singularity.
- 8. What is the residue of $f(z) = \frac{1}{z} + 1 + z + z^2 + \dots$ at z = 0?
- 9. What is the order of the zero of $z(e^z 1)$?
- 10. If f is an even function, then what is the value of $\int_{-\infty}^{\infty} f(x)dx$?

Answer any six questions from this

SECTION - II

Answer any 8 questions from this Section. Each question carries 2 marks.

- 11. Find a power series expansion for $f(z) = \frac{z-1}{z+1}$ about z=0.
- 12. Prove that $\int_{C} \frac{\sin z}{\left(z \frac{\pi}{2}\right)^2} dz$, where C is the circle |z| = 2.
- 13. Evaluate $\int_{0}^{e^{iz}} dz$ where C is |z| = 2.
- 14. Determine and identify the singularities of $\frac{z}{1+z^2}$.
- 15. Determine the order of the pole and residue at z = 0 for $\frac{\sinh z}{z^4}$.
- 16. Find the residue of cot z at z = 0.
- 17. Write the principal part of the function $f(z) = z \exp\left(\frac{1}{z}\right)$ at its isolated singular point and determine the value of the singularity.
- 18. If a is a zero of order r for $\frac{1}{f(z)}$, then prove that a is a pole of order r for f(z).
- 19. Find the residue of $\frac{1}{(z^2+a^2)^2}$ at z=ai.
- 20. State Jordan's Lemma.
- 21. Find the residue of $\frac{ze^z}{(z-1)^3}$ at its pole.
- 22. Find $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

SECTION - III

Answer any six questions from this Section. Each question carries 4 marks.

- 23. State and prove Cauchy's theorem.
- 24. Evaluate $\int_{C} \frac{e^{2z}}{(z+1)^4} dz$ where C is the circle |z| = 2.

 25. Evaluate $\int_{C} \frac{e^z}{(z+2)(z+1)^2} dz$ where C is |z| = 3.

26. Let f be analytic inside and on a simple closed curve C. Then prove that

 $f'(z) = \frac{1}{2\pi i} \int_{C} \frac{f(\xi)}{(\xi - z)^2} d\xi$, where z is any point inside C.

- 27. Let f be a function which is bounded and analytic throughout a domain $0 < |z z_0| < \delta$. Then prove that either f is analytic at z_0 or else z_0 is a removable singular point of δ .
- 28. Prove that an isolated singularity a of f(z) is a pole if and only if $\lim_{z \to a} f(z) = \infty$.
- 29. Prove that $\int_0^{2\pi} \frac{d\theta}{5 + 4\sin\theta} = \frac{2\pi}{3}$.
- 30. Prove that $\int_{0}^{\pi} \frac{a d\theta}{a^2 + \sin^2 \theta} = \frac{\pi}{\sqrt{a^2 + 1}}$, a > 0.
- 31. Find $\sum_{n=0}^{\infty} {2n \choose n} \frac{1}{5^n}.$

SECTION - IV

Answer any 2 questions from this Section. Each question carries 15 marks.

32. a) State and prove Cauchy's integral formula.

7

8

b) Find the residue of $\frac{e^z}{z^2(z^2+9)}$ at its poles.

7

33. a) State and prove Casorati-Weierstarss theorem.

8

b) Prove that $\int_{-\infty}^{\infty} \frac{(x^2 - x + 2)}{x^4 + 10x^2 + 9} dx = \frac{5\pi}{12}$.

8

34. a) Prove that $\int_{0}^{\infty} \frac{dx}{(x^2 + a^2)^2} = \frac{\pi}{4a^3}$.

7

b) Show that $\int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}.$ 35. a) Use residue, evaluate $\int_{0}^{2\pi} \frac{d\theta}{1 + a \sin \theta} = \frac{2\pi}{\sqrt{1 - a^2}}, -1 < a < 1.$

8

b) Prove that $\int_{1+x^2}^{\infty} \frac{\cos x}{1+x^2} dx = \frac{\pi}{2e}$.

7

Reg. No. :

Name :

Sixth Semester B.Sc. Degree Examination, April 2019 First Degree Programme under CBCSS MATHEMATICS Core Course – XII

MM 1644 : Abstract Algebra – II (2014 Admn. Onwards)

Time: 3 Hours Max. Marks: 80

SECTION - I

All the first 10 questions are compulsory. Each carries 1 mark.

- 1. Find $\phi(25)$ for the homomorphism $\phi: \mathbb{Z} \to \mathbb{Z}_7$ such that $\phi(1) = 4$.
- 2. How many homomorphisms are there of \mathbb{Z} into \mathbb{Z} ?
- 3. Find the order of the factor group $(\mathbb{Z}_4 \times \mathbb{Z}_2)/\langle (2,1) \rangle$.
- 4. The trivial subgroup $N = \{0\}$ of \mathbb{Z} is a normal subgroup. Compute $\mathbb{Z}/\{0\}$.
- The image of a group of 6 elements under a homomorphism may have 12 elements. True or False.
- 6. Compute the product (-3, 5) (2, -4) in the ring $\mathbb{Z}_4 \times \mathbb{Z}_{11}$.
- 7. Find all units in the ring $\mathbb{Z} \times \mathbb{Z}$.
- 8. Find the characteristic of the ring $\mathbb{Z}_3 \times \mathbb{Z}_3$.
- 9. Using Fermat's theorem, find the remainder of 347 when it is divided by 23.
- A ring homomorphism φ: R → R' carries ideals of R into ideals of R'. True or False.

SS SI Late A Company SECTION - II

Answer any 8 questions from this Section. Each question carries 2 marks.

- 11. Show that a group homomorphism $\phi: G \to G'$ is a one-to-one map if and only if $Ker(\phi) = \{e\}$.
- 12. Let H be a normal subgroup of G. Then show that $\gamma: G \to G/H$ given by $\gamma(x) = xH$ is a homomorphism with kernel H.
- 13. Does there exist a nontrivial homomorphism $\phi: \mathbb{Z}_3 \to \mathbb{Z}$? If yes, give an example. If not, explain why that is so.
- 14. Show that any group homomorphism $\phi: G \to G'$ where |G| is a prime must either be the trivial homomorphism or a one-to-one map.
- 15. Show that a factor group of a cyclic group is cyclic.
- 16. Let (R, +) be an abelian group. Show that (R, +, .) is a ring if we define ab = 0 for all $a, b \in R$.
- 17. Are the fields $\mathbb R$ and $\mathbb C$ isomorphic? Justify your answer.
- 18. In the ring \mathbb{Z}_n , show that the divisors of 0 are precisely those nonzero elements that are not relatively prime to n.
- 19. Show that 1 and p 1 are the only elements of the field \mathbb{Z}_p that are their own multiplicative inverse.
- 20. Let F be the ring of all functions mapping $\mathbb R$ into $\mathbb R$ and having derivatives of all orders. Differentiation gives a map $\delta: F \to F$ where $\delta(f(x)) = f'(x)$. Is δ a homomorphism? Why?
- 21. Show that each homomorphism from a field to a ring is either one to one or maps everything onto 0.
- 22. Show that if R is a ring with unity and N is an ideal of R such that $N \neq R$, then R/N is a ring with unity.

ent evon 9 . D a la la lone H len SECTION - III

Answer any 6 questions from this Section. Each question carries 4 marks.

- 23. Let $\phi: G \to G'$ be a group homomorphism. Show that if |G| is finite, then $|\phi[G]|$ is finite and is a divisor of |G|.
- 24. Show that if a finite group G has exactly one subgroup H of a given order, then H is a normal subgroup of G.
- 25. Show that an intersection of normal subgroups of a group G is again a normal subgroup of G.
- 26. Show that if U is the collection of all units in a ring (R, +, .) with unity, then (U, .) is a group.
- 27. Show that every finite integral domain is a field.
- 28. Find all positive integers n such that \mathbb{Z}_n contains a subring isomorphic to \mathbb{Z}_2 .
- 29. Find all solutions of the congruence $155x \equiv 75 \pmod{65}$.
- 30. Let R be a commutative ring with unity of prime characteristic p. Show that the map ϕ_p : R \rightarrow R given by $\phi_p(a) = a^p$ is a homomorphism.
- 31. A ring R is a Boolean ring if a² = a for all a ∈ R. Show that every Boolean ring is commutative.

SECTION - IV

Answer any 2 questions from this Section. Each question carries 15 marks.

- a) Prove or disprove: If d divides the order of G, then there must exist a subgroup H of G having order d.
 - b) Let ϕ be a homomorphism of a group G into a group G'. If K' is a subgroup of G', then show that $\phi^{-1}[K']$ is a subgroup of G.

18 in the ring Z

that are got tell

20	=1	Tall a cut to promote a	
Ans	a)	Let $\phi: G \to G'$ be a homomorphism with kernel H and let $a \in G$. Prove the	
		set $\{x \in G \mid \phi(x) = \phi(a)\} = Ha$.	5
	b)	Let H be a normal subgroup of G. Show that the cosets of H form a group G/H under the binary operation (aH) (bH) = (ab)H.	5
	c)	Show that if H and N are subgroups of a group G, and N is normal in G, then $H \cap N$ is normal in H. Show by an example that $H \cap N$ need not be normal in G.	5
21	2)	An element a single distribution and the same and the sam	J
34.	a)	An element a of a ring R is idempotent if $a^2 = a$. Find all idempotents in the ring $\mathbb{Z}_6 \times \mathbb{Z}_{12}$.	5
	b)	Show that the unity element in a subfield of a field must be the unity of the	
		whole field.	5
	c)	Solve the equation $x^2 - 5x + 6 = 0$ in \mathbb{Z}_{12} .	5
35.	a)	Show that a division ring contains exactly two idempotent elements.	5
		Show that the characteristic of a subdomain of an integral domain D is equal to the characteristic of D.	-
	۵)		5
	C)	Show that 2 ^{11, 213} – 1 is not divisible by 11.	5

SECTION - IV

30. Let R be a commutative ring with unity of prine of usylenitis p. Show that the

11. A ring R is a Boolean ring it a' = a for all a e. R. Show that avery Boolean ring

29. Find all solutions of the column into 155

momorbia at the existing videovily Raw A hippopum

recently 2 questions from this Section i Each question carries 15 marks on the entry 2 questions from this Section i Each question carries 15 marks on the company of the c

the sach homomorphism from a field rebroigning to at guongdue or

be a homomorphism of a group G into a group G into a group G in K' is a subgroup

There that I H is a ring with John and Lat. It would be the late of the

Reg. No.:.....

Sixth Semester B.Sc. Degree Examination, April 2019 First Degree Programme under CBCSS MATHEMATICS Elective

MM 1661.1 : Graph Theory (2014 Admission Onwards)

Time: 3 Hours

Max. Marks: 80

edge having one end vertex in V. and

SECTION - I

All the first 10 questions are compulsory. They carry 1 mark each.

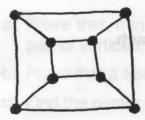
- 1. Define a simple graph.
- 2. The number of odd vertices in a graph is always
- 3. What is a spanning subgraph?
- 4. Define outdegree.
- 5. Is the following graph connected?

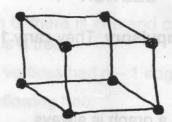
- 6. Define Euler graph.
- 7. What is a unicursal graph?
- 8. Define radius of a graph.
- 9. A tree with n vertices has _____ edges.
- 10. What is maximal tree of a graph?

SECTION - II

Answer any 8 questions from among the questions 11 to 22. These questions carry 2 marks each.

- 11. Write any two applications of graph theory with suitable explanation.
- 12. Write the adjacency matrix of C₄.
- 13. Prove that the sum of degrees is equal to twice the number of edges.
- 14. Label the following graphs to prove that they are isomorphic.





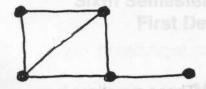
- 15. Prove that a graph G is disconnected if and only if the vertex set can be partitioned into 2 non-empty disjoint subsets V₁ and V₂ such that there is no edge having one end vertex in V₁ and another in V₂.
- 16. Is the following graph Euler graph? Explain.

- 17. Explain Chinese Postman problem.
- 18. State a characterization theorem for Euler digraph. Illustrate with an example.
- 19. Prove that there is one and only one path between every pair of vertices in a tree T.
- 20. Prove that a graph with n vertices, n 1 edges and no circuits is connected.

15 marks each.

Alaswer any 2 questions from and

- 21. Prove that a graph G is a tree if and only if it is minimally connected.
- 22. Define spanning tree. Find a spanning tree of the following graph.



SECTION - III

Answer any 6 questions from among the questions 23 to 31. These questions carry . So 4 marks each.

- 23. Draw all non-isomorphic graphs on 4 vertices. How many of them are self-complementary? How many are connected?
- 24. Define spanning subgraph and induced subgraph. Is P₄ a spanning subgraph of K₄? Is it an induced subgraph? Explain.
- 25. Define incidence matrix. Draw the graph with incidence matrix.

- 26. Prove that a graph with n vertices and k components can have at most $\frac{(n-k)(n-k+1)}{2}$ components.
- 27. In a connected graph G with exactly 2k odd vertices, prove that there exist k edge disjoint subgraphs such that they together contain all edges of G and that each is a unicursal graph.
- 28. Prove that every tree has either one or two centers.
- 29. Prove that every connected graph has at least one spanning tree.

- 30. Draw planar representations of K₁ and a cube.
- 31. Prove that in any simple connected planar graph with f regions, n vertices and e edges, $e \ge \frac{3f}{2}$ and $e \le 3n 6$.

SECTION - IV

Answer any 2 questions from among the questions 32 to 35. These questions carry 15 marks each.

- 32. Explain in detail multicolour cube puzzle and its graph theoretic model.
- 33. Explain decanting problem with its graph theoretic formation.
- 34. a) Prove that, if in a graph G there is one and only one path between every pair of vertices, then G is a tree.
 - b) Prove that a tree with n vertices had n 1 edges.
 - c) Find the center of the following tree.

35. Define planar graphs. State a necessary and sufficient condition for a graph G to be planar. Explain Four Colour Theorem and its graph theoretic interpretation.

26. Prove that a graph with n vertices and k components can have at most